• 제목/요약/키워드: worst-case robust design

검색결과 14건 처리시간 0.021초

Robust Relay Design for Two-Way Multi-Antenna Relay Systems with Imperfect CSI

  • Wang, Chenyuan;Dong, Xiaodai;Shi, Yi
    • Journal of Communications and Networks
    • /
    • 제16권1호
    • /
    • pp.45-55
    • /
    • 2014
  • The paper investigates the problem of designing the multiple-antenna relay in a two-way relay network by taking into account the imperfect channel state information (CSI). The objective is to design the multiple-antenna relay based upon the CSI estimates, where the estimation errors are included to attain the robust design under the worst-case philosophy. In particular, the worst-case transmit power at the multiple-antenna relay is minimized while guaranteeing the worst-case quality of service requirements that the received signal-to-noise ratio (SNR) at both sources are above a prescribed threshold value. Since the worst-case received SNR expression is too complex for subsequent derivation and processing, its lower bound is explored instead by minimizing the numerator and maximizing the denominator of the worst-case SNR. The aforementioned problem is mathematically formulated and shown to be nonconvex. This motivates the pursuit of semidefinite relaxation coupled with a randomization technique to obtain computationally efficient high-quality approximate solutions. This paper has shown that the original optimization problem can be reformulated and then relaxed to a convex problem that can be solved by utilizing suitable randomization loop. Numerical results compare the proposed multiple-antenna relay with the existing nonrobust method, and therefore validate its robustness against the channel uncertainty. Finally, the feasibility of the proposed design and the associated influencing factors are discussed by means of extensive Monte Carlo simulations.

차량용 볼조인트의 최악 조건을 고려한 강건 설계 (Robust Design of an Automobile Ball Joint Considering the Worst-Case Analysis)

  • 신봉수;김성욱;김종규;이권희
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.102-111
    • /
    • 2017
  • An automobile ball joint is the element for connecting the control arm and the knuckle arm, allowing rotational motion. The ball joint consists of the stud, plug, socket, and seat. These components are assembled through the caulking process that consists of plugging and spinning. In the existing research, the pull-out strength and gap stiffness were calculated, but we did not consider the uncertainties due to the numerical analysis and production. In this study, the uncertainties of material property and tolerance are considered to predict the distributions of pull-out strength and gap stiffness. Also, pull-out strength and gap stiffness are predicted as the a distribution rather than one deterministic value. Furthermore, a robust design applying the Taguchi method is suggested.

Large Robust Designs for Generalized Linear Model

  • Kim, Young-Il;Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권2호
    • /
    • pp.289-298
    • /
    • 1999
  • We consider a minimax approach to make a design robust to many types or uncertainty arising in reality when dealing with non-normal linear models. We try to build a design to protect against the worst case, i.e. to improve the "efficiency" of the worst situation that can happen. In this paper, we especially deal with the generalized linear model. It is a known fact that the generalized linear model is a universal approach, an extension of the normal linear regression model to cover other distributions. Therefore, the optimal design for the generalized linear model has very similar properties as the normal linear model except that it has some special characteristics. Uncertainties regarding the unknown parameters, link function, and the model structure are discussed. We show that the suggested approach is proven to be highly efficient and useful in practice. In the meantime, a computer algorithm is discussed and a conclusion follows.

  • PDF

Probabilistic Constrained Approach for Distributed Robust Beamforming Design in Cognitive Two-way Relay Networks

  • Chen, Xueyan;Guo, Li;Dong, Chao;Lin, Jiaru;Li, Xingwang;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.21-40
    • /
    • 2018
  • In this paper, we propose the distributed robust beamforming design scheme in cognitive two-way amplify-and-forward (AF) relay networks with imperfect channel state information (CSI). Assuming the CSI errors follow a complex Gaussian distribution, the objective of this paper is to design the robust beamformer which minimizes the total transmit power of the collaborative relays. This design will guarantee the outage probability of signal-to-interference-plus-noise ratio (SINR) beyond a target level at each secondary user (SU), and satisfies the outage probability of interference generated on the primary user (PU) above the predetermined maximum tolerable interference power. Due to the multiple CSI uncertainties in the two-way transmission, the probabilistic constrained optimization problem is intractable and difficult to obtain a closed-form solution. To deal with this, we reformulate the problem to the standard form through a series of matrix transformations. We then accomplish the problem by using the probabilistic approach based on two sorts of Bernstein-type inequalities and the worst-case approach based on S-Procedure. The simulation results indicate that the robust beamforming designs based on the probabilistic method and the worst-case method are both robust to the CSI errors. Meanwhile, the probabilistic method can provide higher feasibility rate and consumes less power.

A Robust Extended Filter Design for SDINS In-Flight Alignment

  • Yu, Myeong-Jong;Lee, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.520-526
    • /
    • 2003
  • In the case of a strapdown inertial navigation system (SDINS) with sizeable attitude errors, the uncertainty caused by linearization of the system degrades the performance of the filter. In this paper, a robust filter and various error models for the uncertainty are presented. The analytical characteristics of the proposed filter are also investigated. The results show that the filter does not require the statistical property of the system disturbance and that the region of the estimation error depends on a freedom parameter in the worst case. Then, the uncertainty of the SDINS is derived. Depending on the choice of the reference frame and the attitude error state, several error models are presented. Finally, various in-flight alignment methods are proposed by combining the robust filter with the error models. Simulation results demonstrate that the proposed filter effectively improves the performance.

부정 내적 공간에서의 준최적 분산 $H^{\infty}$ 상태 추정기 설계 (Design of Decentralized $H^{\infty}$ State Estimator in Indefinite Inner Product Spaces)

  • 나원상;진승희;박진배;윤태성;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.436-439
    • /
    • 1998
  • In this paper, we propose a centralized $H^{\infty}$ state estimator for the multi state estimation problem using the result suboptimal $H^{\infty}$ filter is a special form of Ka filter whose state equations are defined in md inner product spaces. Con- ventional decentr filters are based on Kalman filter assumes precesses and measurements noises are w Gaussian noise. Therefore, Kalman based decent filter design hasn't robust performance in situation. Simulation results show that decent $H^{\infty}$ filter has robust perfotmance in worst case sensor fault situation.

  • PDF

Robust Secure Transmit Design with Artificial Noise in the Presence of Multiple Eavesdroppers

  • Liu, Xiaochen;Gao, Yuanyuan;Sha, Nan;Zang, Guozhen;Wang, Shijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2204-2224
    • /
    • 2021
  • This paper studies secure wireless transmission from a multi-antenna transmitter to a single-antenna intended receiver overheard by multiple eavesdroppers with considering the imperfect channel state information (CSI) of wiretap channel. To enhance security of communication link, the artificial noise (AN) is generated at transmitter. We first design the robust joint optimal beamforming of secret signal and AN to minimize transmit power with constraints of security quality of service (QoS), i.e., minimum allowable signal-to-interference-and-noise ratio (SINR) at receiver and maximum tolerable SINR at eavesdroppers. The formulated design problem is shown to be nonconvex and we transfer it into linear matrix inequalities (LMIs). The semidefinite relaxation (SDR) technique is used and the approximated method is proved to solve the original problem exactly. To verify the robustness and tightness of proposed beamforming, we also provide a method to calculate the worst-case SINR at eavesdroppers for a designed transmit scheme using semidefinite programming (SDP). Additionally, the secrecy rate maximization is explored for fixed total transmit power. To tackle the nonconvexity of original formulation, we develop an iterative approach employing sequential parametric convex approximation (SPCA). The simulation results illustrate that the proposed robust transmit schemes can effectively improve the transmit performance.

설계변수 및 물성치의 공차영역을 고려한 강건설계 (Robust Design considering Tolerance Bands of Design Variables and Material Properties)

  • 안병철;이종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.419-426
    • /
    • 2001
  • Industrial products determined by fixed size posses definite limits variety by manufacture tolerance in existence. The optimum value solved by deterministic approaches do not account of tolerance bands of design variables and material properties. If we examine optimum value considering tolerance bands of design variables and material properties, it might be useless, owing to exist infeasible region. We have two ways to prevent being useless value. The one is to minimize tolerance band, the other is to consider tolerance band in optimum design. The former needed more accuracy during manufacturing process require higher production cost, the letter is more appropriate to consider tolerance band. In this research, we consider the tolerance bands of all variables, which might have the tolerance bands used in the problem, based on optimum value of deterministic approaches. Orthogonal arrays are used to minimize the number of trial. Tolerance bands are supposed discretionary according to design variable. Appropriateness suggested by this research is examined through two examples. Mathematical problem is investigated only in terms of tolerance bands of design variables, and cantilever beam problem is explained through tolerance bands of design variable, material properties and loading conditions. It is proved that values from the presented method are satisfactory for tolerance bands of variables.

  • PDF

슬라이딩 모드를 이용한 견실한 추정기설계 (Design of Robust Estimator using Sliding Mode)

  • 윤병도;김윤호;김춘삼;김찬기;한재혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.784-786
    • /
    • 1993
  • Recently, in the industrial applications, the sensorless system is developed, but the sensorless system is required to have robustness for the measurement noise and disturbance. In this paper, for the sensorless system, the method of designing a robust sliding mode observer taking account of the ability of disturbance and noise attenuation is presented. Also, the strategy for the estimation of rotor flux using the sliding mode observer, which is robust to the measurement noise, is described. Robustness are achieved by assigning the pole of the the system during the sliding motion in such a way as to minimize the effects of the disturbances on the rotor flux estimation error. Finally, using worst case desist and LQC(least square error design), the sliding mode absolver is verified by computer simulations.

  • PDF

SLNR-based Precoder Design in Multiuser Interference Channel with Channel Estimation Error

  • Seo, Bangwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.40-52
    • /
    • 2020
  • In this paper, we consider a precoder design problem for multiuser interference channel. Most of the conventional schemes for precoder design utilize a signal-to-interference-plus-noise ratio (SINR) as a cost function. However, since the SINR metric of a desired transmitter-receiver pair is a function of precoding vectors of all transmitters in the multiuser interference channel, an analytic closed-form solution is not available for the precoding vector of a desired transmitter that maximizes the SINR metric. To eliminate coupling between the precoding vectors of all transmitters and to find a closed-form solution for the precoding vector of the desired transmitter, we use a signal-to-leakage-plus-noise ratio (SLNR) instead as a cost function because the SLNR at a transmitter is a function of the precoding vector of the desired transmitter only. In addition, channel estimation errors for undesired links are considered when designing the precoding vector because they are inevitable in a multiuser interference channel. In this case, we propose a design scheme for the precoding vector that is robust to the channel estimation error. In the proposed scheme, the precoding vector is designed to maximize the worst-case SLNR. Through computer simulation, we show that the proposed scheme has better performance than the conventional scheme in terms of SLNR, SINR, and sum rate of all users.