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A Robust Extended Filter Design for SDINS In-Flight Alignment

Myeong-Jong Yu and Sang Woo Lee

Abstract: In the case of a strapdown inertial navigation system (SDINS) with sizeable attitude
errors, the uncertainty caused by linearization of the system degrades the performance of the
filter. In this paper, a robust filter and various error models for the uncertainty are presented.
The analytical characteristics of the proposed filter are also investigated. The results show that
the filter does not require the statistical property of the system disturbance and that the region
of the estimation error depends on a freedom parameter in the worst case. Then, the uncertainty
of the SDINS is derived. Depending on the choice of the reference frame and the attitude error
state, several error models are presented. Finally, various in-flight alignment methods are
proposed by combining the robust filter with the error models. Simulation results demonstrate
that the proposed filter effectively improves the performance.
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1. INTRODUCTION

The strapdown inertial navigation system
(SDINS) is a nonlinear system. Because of the
inherited inertial sensor errors and initial navigation
errors, the errors of navigation solutions have a
tendency to increase with time. To solve these
problems, an aided SDINS is designed with external
sensors. In designing the aided SDINS, the filter
design and the SDINS error model are the main
concerns [1-4]. A considerable amount of effort has
been devoted to developing effective error models.
However, in the case of a system with significant
attitude errors, it is difficult to accurately linearize the
SDINS error model. Therefore, error models include
significant parameter uncertainty. This uncertainty
degrades performance of the filter [5-6]. During the
last several decades, the Kalman filter and the
extended Kalman filter have been widely used in the
aided SDINS. Not just precise system modeling, but
also the statistical property of the system disturbance
is required for these filters. However, in reality, the
model uncertainty and the incompleteness of the
statistical information make it complicated to
estimate the states of a system with any accuracy.
These difficulties can be overcome by studying a
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robust filter [7-13]. For given statistical information
and modeling uncertainty, the H, filter has most

often been constructed to estimate the system errors.
A guaranteed cost minimization has been widely used
as the performance index of H, filter and upper

bound minimization or minimum variance of the
estimation errors are used as the cost [7-9].
However, these methods require the known statistical
information. Robust filters for a class of uncertain
systems have recently been presented in [14-15]. This
approach is concerned with constructing a state
estimator for a class of uncertain linear systems with
an integral quadratic constraint. Although the
presented filter structure is similar to that of a
previous H, filter, it requires no exact statistical

information concerning the noise. This approach
shows that it is possible to derive a robust filter in
spite of system noise subject to an L, norm. For a

nonlinear system, a nonlinear robust filter with
Hamilton-Jacobi inequality has been developed.
However, it is computationally complex and also has
strong restricted conditions for obtaining the filter
gain. For these reasons, an approximated solution to
the robust filtering problem has been developed
based on a linearization method. This design method
leads to a realistic filter formulation similar to the
extended Kalman filter [10-11]. In [17], the nonlinear
state estimation with a similar approach is proposed
for a nonlinear uncertain system with uncertainties
described by an integral quadratic constraint. In this
paper, a robust filter for uncertainty of the SDINS is
presented. The derivation is similar to that of [17].
The robust filter is constructed, similarly to the
extended Kalman filter, with local linearization of the
system at the reference point. By introducing a state
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estimation set that is the solution of the Hamilton-
Jacobi-Bellman partial differential and by solving the
filtering problem locally, a robust filter is derived.
Then the characteristics of the filter are analyzed.
SDINS error models are obtained based on the
assumption that the attitude errors are sufficiently
large [5-6]. These address the uncertainties generated
in the modeling errors that are essential in the robust
filter. The robust filter requires that the system
uncertainty can be converted into factorized matrix
form. This paper also presents a method to convert
the uncertainty into factorized form. The proposed
filter is applied to the SDINS in-flight alignment.

2. DESIGN AND ANALYSIS OF THE
ROBUST EXTENDED FILTER

Consider a nonlinear uncertain system described
by

X(1) = f(x(D) + AM(x(®) + By ()w, (1), (1)
y(6) = h(x() +v(0), @

where AA(x(?)) represents the system uncertainty
and has the factorized form

AA(x(1)) = By (DA (DN (x(1)) 3

where B(f) and N(x(#)) are known matrices.

A (¢) is an unknown matrix satisfying the condition
”Ql~ ”2A1 (t)HSl where () is a bounded positive

definite matrix. w,(¢) is the process noise and v()
is the measurement noise. They belong to the set of
L,[0,T] norm and the statistical properties are
unknown. In addition, w,(#) and v(#) are noises
satisfying the bound

T
@(x(0)) + j W (05w, () +vT (ORW(t)lde < d
0

where 0<¢<T, ®(x(0)) is a bounded positive

function that depends on an initial state and Jd is an
assigned positive real number. Converting the
uncertainty to a fictitious noise and introducing a free
parameter, uncertain systems (1) and (2) can be
transformed into an auxiliary system,

x(1) = f(x()) + B(Yw(), )
Y(O) = h(x(@) +v(0), ®)

where
B(t)=[pB,(1) By(1], (6)

~1
o0 {p A (r)N(x(t»}’ o
W, (1)

and p is the free parameter. To construct a robust

filter, it is assumed that systems (4) and (5) satisfy
Assumptions 1-5.
Al: Every function shown in (4) and (5) belongs

to C' and the first derivative is bounded.
A2: The matrix N(x(¢)) is bounded.

A3: The functions ®, L;, and L, belong to

C' and are bounded nonnegative functions. They
also satisfy

[@Ce) - @) <6 A+ x|+ Plz = x ]l (82)

,» (8b)

Iy o) = Ly e < By (U + x| + e P ez = 3,
, (8¢)

||L2 (xp) = Ly(x )|| <6 (1+ ||x2 H + ”xl ") ||x2 —X

where 6, 6,,and 6;>0.
A4: The function L; satisfies a coercivity
condition,

Liw,v) 2w where ¢>0. )
A5: The matrix B is of full rank.

2.1. Design of the robust extended filter

In this section, a robust filter is derived based on
a local solution of the filter problem. Similar to the
development of the well-known extended Kalman
filter, we derive the filter by linearizing the system in
a neighborhood of the estimated trajectory, x(¢).

We consider the system that satisfies an integral
quadratic constraint given by

T
(x(0) — x,)" M(x(0) = x,) + [L3(w,v)dt
’ (10)

T
<d+ jLz(N(x))dt,
0

where

Li(w,v)= wTQ_lw+ VIR Y

-1
0 (11)
=w 2 w+vTR_1v,
0 0

Ly(N(x) = p 2N N(x), (12)

and @, is a bounded positive definite matrix [17, 18].
We define the function
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V(x,1) = min,, [(x(0) - x0)" M (x(0)~ x))
+ [l o), v(0) = Ly (N () )ele)
0

For systems (4) and (5) combined with (10), a partial
differential equation is generally given by

%V(x,t) +max, [V V(f(x)+ Bw)

—Li(w,v))+ L (N(x)]=0,

(14)

where V(x,f) denotes a value function and
V(x,0)=®(0) . Assumptions Al-AS5S ensure that
V(x,t) is finite [18].

To derive a robust filter with a modified H,

filter structure, we consider a system that satisfies an
integral quadratic constraint provided by

(x(0) = x¢)" M(x(0) — x,)

T
+% j[w(t)T O~ ') + ()T R™v()dt (15)
0

T
< d+ % j [p 2N(x() N(x(1)dr.
0

Using (14), the partial differential equation for (15) is
obtained as

%V(x, £)+ max [V .V (f(x) + Bw)
—%[w(r)TQ“w(t)+v(t)TR“v(r)] (16)

+§[p‘2 NGO N@(@)] =0.

Rearranging the term [VXVBW—%WTQ_IW] of (16),

we get

VXVBW—%WTQ_lw=—;—VXVBQBTVXVT
1 1 1 1
1 N A 2T N 2
—5((V.\-VBQ2) -0 2w) (V,VBQ?) -Q 2w).
a7

Using (17), the partial differential equation can be
derived as

0 1 T T
VAV () 4V VBOBTV ¥
—%(y —hG) R (= h(x)+ %p’zN(x)T N()=0

(18)

where V(x(0),0) = (x(0) - xO)T M(x(0)—xy) . In the
general nonlinear case, solutions of (18) are smooth
and must be interpreted in the viscosity sense. Thus, a
filter is not well defined in the large. Therefore, we
seek for an approximate F((x),t) by a quadratic

form and replace (18) by a simpler Riccati equation
[17, 18].

X(¢), as an estimated value of the state variable
x(¢) , is defined to be

x(t) = argmin, V((x(7),7). (19)
(19) satisfies two conditions:

vV V(G0 =0, (20)
V2V (R(0),%(F) + %va()z(t),t)T =0. (21)

The gradient of (18) with respect to x is given by

0
ot
+V2VF (x) + V h(x) R (v = h(x) (22)
+p 2V _N(x)" N(x)=0.

T T T 2 T T
vV +v ()’ vy +vivBOB'V v

Using (20) and (21) and evaluating at x =X, (22) is
simplified as
VIV (02 =VV(EOF(5)

(23)
+V B RNy - k@) + p 2V N NR).

Furthermore, supposing that the matrix Vf.V(fc,t) is

nonsingular for all ¢, the dynamic equation of the
state estimate satisfying (19) can be written as

()= fERO) +(VIV GO,
[V G R (y - h(Z())) (24)
+p VNGO NGED)).

In addition, the gradient of (22) with respect to x is
expressed as

9

ot
2 3 3 T T

V2V _f(x)+ V3V (x)+ VVBOB'V .V

+V2VBOB VAT -V h(x) RV h(x) (25)

+V2h(x)T R\ (y = h(x)) + p2VEIN () N(x)

+p 2V N(x)'V _N(x)=0.

VIV 4V VI eV v T

Because V(x,r) is quadratic, the third-order
gradient terms vanish. Using (20) and (21) and
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evaluating at x = X, (25) is simplified as

[1+V_ f(X) TI+1IV_f(%)+TIBOB'TI
—V () R7'V (%)) (26)
+p 2V NE)'V _N(F)=0

where IT= ViV and TI1(0)=M . Furthermore, the

corresponding differential
P()=TI(r)"" from (26) is

equation for

P()= POV S +V f(R)P(D)
+BOBT — POV W R™'V W(®PE)  (27)
+ p POV NGBV _NEP()

where P(0)=M “land M is the matrix that reflects

the initial errors of the system. From these results, a
robust filter for systems (1) and (2) can be
summarized as

() = fR) + POV hGE) Ry — h(3(2)

) e (28)

P(t)= POV . f (D) +V, f(RP()+ p B OB/
+B,0, B — PV (%) RV _h(R)P(r) (29)
+p 2PV NF)T V NR)P()

where x(0)=x, . The proposed filter shows a

modified structure of the nonlinear H, filter

presented in [17]. This filter is particularly developed
by employing a free parameter p which is used as a

tuning parameter. It has the advantage of being able
to be turned to improve performance. The free
parameter plays an important role in accomplishing
superior performance when the robust filter is applied
to the real system. In Section 3, it will be shown that
this parameter can be effectively utilized to improve
the performance of a SDINS in-flight alignment
application.

2.2 Analysis of the robust extended filter

In this section, the analytical characteristics of the
proposed filter are investigated. We will consider the
state estimation set that represents the region of the
estimation error in the worst case, as an important
property of the filter.

Now, a state estimation set is derived. The
estimation error can be defined as

@) =x(0)-x(1). (30)

Neglecting higher-order terms of the estimation

errors, nonlinear functions f(x(¢)), A(x(¢)), and
N(x(t)) are defined to be

F(x@) = fEO) + A1) - X(1)),
h(x(0)) = h(x(£)) + C(E)(x(t) — X(1)), €2y
N(x(1)) = N(x@®) + N(O(x(0) - 2(2)),

and the dynamic equation of the estimated error
$(t) is expressed as

¢ = (4N - KOCO)s (1) + B(O)w(r)

-2 T s n (32)
—p POV NE(@)" N(x(0) - K(O)v(5)

where A(t)=%;(£(t)) , C(t)=%()?(t)) , and

K()=PoO)C)' R,
Suppose that a function is chosen such that

V(;(r»%ﬂ(r)P(r)“;(r) (33)

where P(t) is the solution of (29). Differentiating
V(£ (¢)) over time yields

V(@)= %[é’ OP@ (1)
+{TOPO 'O+ <T PEE@))
Substituting (29) and (32) in (34), V(£ (f)) becomes

(34)

V(&) = %MT OIC@y ' R™'C(r)

~P(t)"' BB P(t)”' —(K(OC@) P(1)™
~P() KT +w B PO (@)

~K (W) PO O+ L@ PO Bryw (35)
" Pty K (r)v

+p T OV NETV NEDK (@)
~¢(0) V. NE' NG - (Y NE NEY @03
Rearranging (35), we get

440)) =%{¢T (OI-P(t)" BOOB®) Pty 1 (2)
+w B()T Pty (0 + £ (0 Pty B(ywy

+%{¢T O-c R'cle o)

~(K(@ew) Pty ¢ ()~ < () POy K (1w

+p2 %{:’" O-V NE) YV NEDK @)

~¢(OV NET NG - (VNG NE)Y @0}

(36)
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The first term of the right hand side of (36) can be
converted into

cO =P BOOBO PO ") (1)
+w BOT PO ¢+ L0 P@Y T BOw  (37)

= wTQ_lw— sTs

1 1

where 5= Q_Ew - (B(t)QE )T P(t)_1 ¢ and
11

0=0207

of (36) can be also converted into

. The second term of the right hand side

COT-C@ RT'COIE O - (KW P07 ¢ ()

(38)
@O PO K@w=vIRv=5"R 'y

11

-~ -T
where 7=v+C(f)¢ and R=R2R2
term can be modified into

. The third

LT OV NGV NEDK @)

~¢(O"V NE NE-(V N N@)Y oy
= N(®) N(®) - (N(®) +V NES @) (N()
+V NES () = N®T N@ - Nx) N(x).

By the substitution of (37), (38), and (39) into (36),
we are left with

V(@) = %[WTQ_IW —sTs+v Ry = 77TR_177

+ p HNBT NE) - N N0}

| (40)
< E[ngz_lwo ~sTs+V R v— 7 R ™'y
+ p N N
From (40), we obtain the following inequality:
; | T -1
V(@) < —=[w wy+Vv R v
@) S [%0 Q2 wo @n

+ p PN N

Finally, the approximated state estimation set, ., , of

the derived filter is obtained as follows. By integrating
both sides of (41) and by simplifying the results, the
approximated state estimation set is given by

Y =x(M)eR™:
%(x(T) - f(T))TP(T)T(x(T) ~XT) (42)

<

The derived state estimation set is dependent upon
p, d, and N(X). This result shows that the free
parameter, p, can be also utilized to reduce the
filter's estimation set in the worst case. On the
contrary, when the existing nonlinear H, filter is

applied to the nonlinear system, the state estimation
setdependson d and N(X).

3. APPLICATION TO SDINS

In this section, error models including the
uncertainty of the SDINS are developed. To verify the
effectiveness of the derived uncertainty model, a
velocity-aided SDINS is designed. The inertial
navigation system is constructed in a local-level frame.
The error models, such as latitude error &L ,
longitude error o/, height error 64, velocity error

6v", and attitude error are adopted. The measurement of
the velocity-aided SDINS is given by

y(@) = CO)x(®) +v(1) (43)

where C(1)=[033 I3 030] .
proposed robust filter, error models containing the
uncertainty are necessary. Therefore, when the error
models are derived, it is desirable to derive
uncertainty structure. Depending on the choice of the
reference frame and the attitude error state, several
error models are derived. The position and velocity
error models are derived as

To employ the

. R
SL="mmPEsr, PE _sp 1 500 (a4
R, +h R,+h R, +h

m

Si=LN_(tanr - —Re_ys1
cosL , +h
L L (43)
_pyseel o sec -
R +h R +h
Sh=-8vp, (46)
V" = ACT [P 200 + & 1% 6V + CISf° @
+V" x (280}, + Sw),) +5g".
In the velocity error model, AC} f b s strongly

related to attitude errors. In the case in which the
system has only large attitude errors, this term contains
uncertainty. To obtain effectively the uncertainty
structure, we use a MQE (Multiplicative Quaternion
Error) [5, 6, 13]. First, a MQE model with respect to
the navigation frame is derived. The attitude error

model, ¢",and ACYf® with respect to MQE are
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. 1
§" =l xq" —E(Cg'ﬁa)ﬁ, - Sawy,), (48)

ACH £ ==2[qo,] + Rp, 1Ry, 1Ch f”
=2qo,] + Ry, C; f*x14"
=2[C} f*X1q" +2[c,d + Rp, ICy /X1 4"
(49)

T
where ¢" =[q,, 9. @) » qon=1+c, and

[Rp,] denotes a skew-symmetric matrix of g¢”.

Then, the MQE model with respect to the body frame
is obtained as follows. The attitude error model of the

MQE, 4", and AC}f? with respect to the body
frame is

) 1
i =-oh <" -3l ~Cloal, ()

ACH 1 ==2C7 1 gop] + Rop[Rps 1 17
=2Cy [qop! + RQb][fb <] "
=2C51f°x1g" +2CHlepd + Ry 1" x1 ¢
(51)

b T
where ¢ =[q, 925 93] 5 qop=1+¢, , and

[Rpp] denotes a skew-symmetric matrix of qb .

(49) and (51) indicate that AC) f° is composed of

the linear term and the uncertainty. Thus, the system
equations involve uncertainty. Using the derived error
models, we can easily convert the uncertainty into a
factorized form, as Bj($)A;(2)N(x(#)) in (3). Until
now, the error models useful for the robust filter with
the uncertainty structure are derived. By combining the
robust filter proposed in Section 2 and derived error
models, various in-flight alignment techniques can be
designed. In this paper, we select the MQE model
given by (44) - (49) for simulations. 15 state variables
are composed of position (3), velocity (3), attitude (3),
accelerometer bias (3), and gyroscope bias (3). The
major errors of the inertial sensors considered in the
simulation are gyroscope bias error (3 deg/hr),
gyroscope scale factor error (500 ppm), and
accelerometer bias error (1000 pg), with accelerometer
bias assumed to be a random constant. The initial
attitude errors are assumed to be 10 degrees horizontal
plane attitude error and 20 degrees heading error. Monte
Carlo simulations are performed for 1000 seconds and
the filter update period is 0.1 second. The trajectory for
the simulation is as follows. First, to increase the
observability of the system, the heading angle is
changed three times. After that time on, the vehicle
moves straight with 10 m/sec speed. The free

Table 1. Steady-state position and heading errors.

EKF Robust filter
Heading error
£ 80 50
(arcmin)
Position error
90 75
(C.E.P)(m)
2000 Attitude Error : Heading
1500
T
E 1000
8,
(=]
500“’“ EKF Robus\tFllter
o s
0 s S
0 200 400 600 800 1000
Time [sec}

Fig. 1. Heading error.
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00 200 400 600 800 1000
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Fig. 2. Position error.

parameter p is selected as 0.5556 and is determined

via simulations. The results are compared with the
results of the corresponding EKF. The results are shown
in Fig. 1, Fig. 2, and Table 1. The proposed filter
reduces the attitude error and position error compared
with the EKF. As shown in the figures, the proposed
filter reduces the heading error by about 37% and the
position error by about 16% more than the EKF. In
addition, the convergence of the attitude error is faster
than that of the EKF. The simulation results have shown
that it is possible to further improve in-flight alignment
accuracy by employing the proposed filter.

4. CONCLUSION

The robust filter suitable for the aided SDINS with
substantial attitude errors is presented and the
characteristics of the filter are analyzed. Then we obtain
various error models, which can be utilized to improve
the performance of the SDINS by employing the
presented robust filter. The simulation results for a
velocity-aided SDINS  in-flight alignment have
demonstrated that the proposed filter is more effective in
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estimating the attitude error and position error than the
EKF.
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