• Title/Summary/Keyword: work load limit

Search Result 75, Processing Time 0.023 seconds

Work limit Load Efficiency According to Splicing Method for Hand Spliced Wirerope Sling (스플라이스식 와이어로프 슬링의 편입법에 따른 사용하중한계효율)

  • Park, Jae-Suk;Han, Kyoung-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.70-74
    • /
    • 2010
  • For each strand of wirerope sling, the international standards, ISO-8794, EN-13414 specify that the splice shall have five series of load carrying tucks. At least three of the load carrying tucks shall be made with the whole strand. And, the breaking force of the splice shall not be less than 70% or 80% of that of rope. But, There are no prescriptions for splicing types against different efficiency of each splicing type being used many workplace. In this study, analysis the work limit load efficiency according to variation of number of tucks and splicing types by experimental method As a result, the number of tucks 3+2 had the highest breaking efficiency.

Mis-Match Limit Load Analyses and Approximate J-Integral Estimates for Similar Metal Weld with Weld-Center Crack Under Tension Load (용접부 중앙에 표면균열이 존재하는 인장 평판에 대한 강도 불일치 한계하중 해석 및 간략 J-적분 예측)

  • Song, Tae-Kwang;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.411-418
    • /
    • 2008
  • In this work, the effect of strength mismatch on plastic limit loads is quantified for similar metal weld plates with cracks under tension load, via three-dimensional, small strain elastic-perfectly plastic finite element analyses. Relevant variables related to plate geometry and crack length are systematically varied, in addition to the weld width. An important finding is that mis-match limit loads can be uniquely quantified through strength mis-match ratio and one geometry-related parameter. Based on the proposed limit load solutions, reference stress based J-integral estimates is also investigated. When the reference stress is defined by the mis-match limit load, predicted J-integral values agree overall well with FE results.

Plastic Limit Loads of 90° Elbows with Local Wall Thinning using Small Strain FE Limit Analyses (I) - Internal Pressure - (소변형 이론에 입각한 감육이 존재하는 90 도 곡관의 한계하중 (I) - 내압 -)

  • An, Joong-Hyok;Kim, Jong-Hyun;Hong, Seok-Pyo;Park, Chi-Yong;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.586-593
    • /
    • 2007
  • This paper proposes closed-form plastic limit load solutions for elbow with local wall thinning at extrados under internal pressure. This work was performed using 3-dimensional, small strain FE analyses based on elastic-perfectly plastic materials. The wide range of elbow and local wall thinning geometries are considered. For systematic analyses for effect of axial thinning extent on limit loads, two limiting cases are considered; a sufficiently long thinning, and the circumferential part-through surface crack. Then, the closed-form plastic limit load solutions for intermediate thinning are obtained by using result of two limiting cases. The effect of axial thinning extent for elbow on plastic limit load is highlighted by comparing with that for straight pipes. Although the proposed limit load solutions are developed for the case when local wall thinning exist in the center of elbow, it is also shown that they can be applied to the case when local wall thinning exists anywhere within elbow.

Characteristics for Current and Power of Induction Motor by Load Variation (부하변동에 따른 유도전동기 전류와 전력 특성)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.82-87
    • /
    • 2011
  • Induction motor is most widely used as the driving power in the industrial site. Induction motor current is composed of two parts, magnetizing current and load current. Load current uses energy what is doing the work. Load current varies with load variance but magnetizing current is constant, regardless of load variation. Magnetizing current needs for establishing the rotating magnetic field of induction motor and lags behind the voltage. Generally capacitor is used for power-factor compensation of inductive load. Self-excitation occurs when the capacitive reactive current from the capacitor is greater than the magnetizing current of the induction motor. When this occurs, excessive voltages can result on the terminals of the motor. This excessive voltage can cause insulation degradation and ultimately result in motor insulation failure. In this paper, we analyzed that how the magnetizing current and condenser current is operating at the allowable limit by the load variation. Condenser current is below allowable limit of magnetizing current but magnetizing current is above allowable limit at the lower load operation condition.

Limit load analyses of weld-center cracked plates under tension (용접부 중앙에 균열이 존재하는 인장 평판에 대한 한계하중 해석)

  • Song, Tae-Kwang;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1830-1835
    • /
    • 2007
  • In the present work, the effect of strength mismatch on plastic limit loads is quantified for strength-mismatched plates with constant-depth surface cracks under tension, via three-dimensional, small strain elastic-perfectly plastic finite element analyses. Relevant variables related to plate and crack geometries are systematically varied, in addition to the weld width. An important finding is that a parameter related to the weld width-to-ligament ratio is proposed, based on which limit loads can be uniquely quantified. The proposed limit load solutions is a valuable input to estimate nonlinear fracture mechanics parameters based on the reference stress approach.

  • PDF

Engineering J-Integral Estimation for Semi-Elliptical Surface Cracked Plates in Tension (인장하중이 작용하는 평판에 존재하는 반타원 표면균열의 J-적분 계산식)

  • Sim, Do-Jun;Kim, Yun-Jae;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1777-1784
    • /
    • 2001
  • This paper provides d simplified engineering J estimation method fur semi-e1liptical surface cracked plates in tension, based on the reference stress approach. Note that the essential element of the reference stress approach is the plastic limit lead in the definition of the reference stress. However, for surface cracks, the definition of the limit load is ambiguous ("local" or "global"limit lead), and thus the most relevant limit load (and thus reference stress) for the J estimation should be determined. In the present work, such limit load solution is found by comparing reference stress bated J results with those from extensive 3-D finite element analyses. Validation of the proposed equation against FF J results based on tactual experimental tensile data of a 304 stainless steel shows excellent agreements not only far the J values at the deepest point but also for those at an arbitrary paint along the crack front, including at the surface point. Thus the present results provide a good engineering tool for elastic-plastic fracture analyses of surface cracked plates in tension.

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(2) - EGR Characteristics and Comparison of Dilution Method (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(2) - EGR 특성과 희석 방법의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.121-130
    • /
    • 2014
  • This paper is the second investigation on the effects of intake flow control methods on the part load performance in a spark ignition engine. In the previous work, two control methods, port throttling and masking, were compared with respect to lean misfire limit, fuel consumption and emissions. In this work, the effects of these two methods on EGR characteristics were studied and simultaneously the differences between EGR and lean combustion as a dilution method were investigated. The results show that EGR limit is expanded up to 23% and 3 ~ 5% improvement in the fuel consumption are achieved around 8 ~ 13% rates by the flow controls comparing with 10% limit and 1.5% reduction around 3% rate of non-control case. The masking method is more effective on the limit expansion than throttling as like as lean misfire limit; however there is no substantial difference in fuel consumptions improvement regardless the control methods except high load condition. Also it is observed that there exist critical EGR rates around which the combustion performance and NOx formation change remarkably and these rates generally coincide with optimum rates for the fuel consumption. In addition, dilution with fresh air is much more advantageous than that of the exhaust gas from the view point of dilution limit and fuel consumption, while utilization of the exhaust gas is more effective on NOx reduction in spite of considerably small dilution compared with the use of fresh air. Finally, the improvement of fuel consumption by massive EGR is highly dependent on the EGR limit at which the engine runs stably, therefore the stratified combustion technique might be a best solution for this purpose.

Limit Load Solutions for Piping Branch Junctions with local wall-thinning under Internal Pressure (감육이 존재하고 내압을 받는 T 분기관의 한계하중 평가식)

  • Ryu, Kang-Mook;Kim, Yun-Jae;Lee, Kuk-Hee;Park, Chi-Yong;Lee, Sung-Ho;Kim, Tae-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1813-1817
    • /
    • 2007
  • The present work presents plastic limit load solutions for piping branch junctions with local wall-thinning, based on detailed three-dimensional (3-D) and small strain FE limit analyses using elastic-perfectly plastic materials. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. The wall-tinning located on variable area of the piping branch junction is considered. A wide range of piping branch junction and wall-thinning geometries are considered. Comparison of the proposed solutions with FE results shows good agreement

  • PDF

Study on the Strength of Limit Axial Force and Accumulated Limit Axial Force of Concrete Filled Square Tube Columns (콘크리트 충전 각형강관 기둥부재의 한계축력 및 누적한계축력에 관한 연구)

  • Seo, Seong Yeon;Jung, Jin Ahn;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.605-615
    • /
    • 2005
  • Experimental and analytical work was conducted to investigate the relations of axial force and deformational capacity of concrete-filled square steel tube columns. The test series consisting of 36 columns were tested under the constant axial load and horizontal cyclic load. The axial force of the columns that resisted under the cyclic lateral load was defined as a certified strength of limit axial force. The analytical model was defined as a cantilever beam-column. The axial force of the beam-column that resisted under the cyclic lateral load was defined as an accumulated certified strength of limit axial force. The purpose of this study is to investigate the certified strength of limit axial force of concrete-filled steel tube beam-columns, which were subjected to both axial and lateral load condition corresponding to a given constant rotation angle. Another purpose of this study is to discuss the comparison of the certified strength of limit axial force of concrete and the accumulated certified strength of limit axial force of concrete-filled steel tube columns.

Limit Load and Fully Plastic Stress Analysis for Circular Notched Plates and Bars Using Fully Plastic Analysis (완전소성해석을 이용한 원형노치 인장시편의 한계하중 및 완전소성응력장 해석)

  • Oh Chang-Kyun;Myung Man-Sik;Kim Yun-Jae;Park Jin-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1605-1614
    • /
    • 2005
  • For the last four decades, tension test of notched bars has been performed to investigate the effect of stress triaxiality on ductile fracture. To quantify the effect of the notch radius on stress triaxiality, the Bridgman equation is typically used. However, recent works based on detailed finite element analysis have shown that the Bridgman equation is not correct, possibly due to his assumption that strain is constant in the necked ligament. Up to present, no systematic work has been performed on fully plastic stress fields for notched bars in tension. This paper presents fully plastic results for tension of notched bars and plates in plane strain, via finite element limit analysis. The notch radius is systematically varied, covering both un-cracked and cracked cases. Comparison of plastic limit loads with existing solutions shows that existing solutions are accurate for notched plates, but not for notched bars. Accordingly new limit load solutions are given for notched bars. Variations of stress triaxiality with the notch radius and depth are also given, which again indicates that the Bridgman solution for notched bars is not correct and inaccuracy depends on the notch radius and depth.