• Title/Summary/Keyword: work interference

Search Result 326, Processing Time 0.036 seconds

Analytical Evaluation of Interference and Ratio of River Water at Riverbank Filtration Pumping Wells (강변여과 취수정의 간섭효과와 하천수 비율에 대한 해석적 평가)

  • Park, Namsik
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.8
    • /
    • pp.685-691
    • /
    • 2014
  • River bank filtration techniques seek to improve river water quality via natural processes occurring when river water is induced to a river bank. When water is pumped from multiple wells, phenomenon known as well interference affect pumping rates. Pumping wells of a bank filtration facility are connected by pipelines. In theses cases well interference is caused not only by groundwater drawdown but also by pipe headloss which depend on flow rates. In this work a comprehensive analytical method which handles groundwater flow and pipe flow is used to evaluate interferences and ratios of river water in pumping wells. A realistic case was used as an example.

Non-cooperative interference radio localization with binary proximity sensors

  • Wu, Qihui;Yue, Liang;Wang, Long;Ding, Guoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3432-3448
    • /
    • 2015
  • Interference can cause serious problems in our daily life. Traditional ways in localizing a target can't work well when it comes to the source of interference for it may take an uncooperative or even resistant attitude towards localization. To tackle this issue, we take the BPSN (Binary Proximity Sensor Networks) and consider a passive way in this paper. No cooperation is needed and it is based on simple sensor node suitable for large-scale deployment. By dividing the sensing field into different patches, when enough patches are formed, good localization accuracy can be achieved with high resolution. Then we analyze the relationship between sensing radius and localization error, we find that in a finite region where edge effect can't be ignored, the trend between sensing radius and localization error is not always consistent. Through theoretical analysis and simulation, we explore to determine the best sensing radius to achieve high localization accuracy.

Low complexity ordered successive interference cancelation detection algorithm for uplink MIMO SC-FDMA system

  • Nalamani G. Praveena;Kandasamy Selvaraj;David Judson;Mahalingam Anandaraj
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.899-909
    • /
    • 2023
  • In mobile communication, the most exploratory technology of fifth generation is massive multiple input multiple output (MIMO). The minimum mean square error and zero forcing based linear detectors are used in multiuser detection for MIMO single-carrier frequency division multiple access (SCFDMA). When the received signal is detected and regularization sequence is joined in the equalization of spectral null amplification, these schemes experience an error performance and the signal detection assesses an inversion of a matrix computation that grows into complexity. Ordered successive interference cancelation (OSIC) detection is considered for MIMO SC-FDMA, which uses a posteriori information to eradicate these problems in a realistic environment. To cancel the interference, sorting is preferred based on signal-to-noise ratio and log-likelihood ratio. The distinctiveness of the methodology is to predict the symbol with the lowest error probability. The proposed work is compared with the existing methods, and simulation results prove that the defined algorithm outperforms conventional detection methods and accomplishes better performance with lower complication.

Physical Activity and Fatigue among Pediatric Nurses in a Special Care Unit (특수병동 아동 간호사의 신체활동과 피로)

  • Chae, Sun-Mi;Suh, Eun-Young;Jung, Hyun-Myung;Lee, Ji-Hye
    • Perspectives in Nursing Science
    • /
    • v.15 no.1
    • /
    • pp.18-28
    • /
    • 2018
  • Purpose: This study was designed to explore the levels of physical activity and fatigue among nurses and to identify the relationship between these variables. Methods: Participants were 89 nurses working at an intensive care unit and an operating room in a children's hospital. Data were collected using self-reported questionnaires including the International Physical Activity Questionnaire and Brief Fatigue Inventory. Results: Most of the nurses' physical activity was work related, and there was a significant difference according to the working unit. Nurses with higher work stress and lower job satisfaction showed higher levels of fatigue than their counterparts did. Work-related physical activity and the interference of fatigue with relationships were related positively, whereas transport and leisure time physical activity were negatively related to usual fatigue and the interference of fatigue with life enjoyment. Conclusion: The levels of physical activity and fatigue of nurses were higher than those observed among other populations. The appropriate level of physical activity for these nurses needs to be investigated carefully. Also, in the intervention for nurses' fatigue, their level of work-related and leisure-time physical activity should be considered separately, and their work environment and psychological satisfaction level should be included.

Joint Precoding Technique for Interference Cancellation in Multiuser MIMO Relay Networks for LTE-Advanced System (LTE-Advanced 시스템의 다중 사용자 MIMO Relay 네트워크에서 간섭 제거를 위한 Joint Precoding 기술)

  • Malik, Saransh;Moon, Sang-Mi;Kim, Bo-Ra;Kim, Cheol-Sung;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.15-26
    • /
    • 2012
  • In this paper, we perform interference cancellation in multiuser MIMO (Multiple Input Multiple Output) relay network with improved Amplify-and-Forward (AF) and Decode-and-Forward (DF) relay protocols. The work of interference cancellation is followed by evolved NodeB (eNB), Relay Node (RN) and User Equipment (UE) to improve the error performance of whole transmission system with the explicit use of relay node. In order to perform interference cancellation, we use Dirty Paper Coding (DPC) and Thomilson Harashima Precoding (THP) allied with detection techniques Zero Forcing (ZF), Minimum Mean Square Error (MMSE), Successive Interference Cancellation (SIC) and Ordered Successive Interference Cancellation (OSIC). These basic techniques are studied and improved in the proposal by using the functions of relay node. The performance is improved by Decode-and-Forward which enhance the cancellation of interference in two layers at the cooperative relay node. The interference cancellation using weighted vectors is performed between eNB and RN. In the final results of the research, we conclude that in contrast with the conventional algorithms, the proposed algorithm shows better performance in lower SNR regime. The simulation results show the considerable improvement in the bit error performance by the proposed scheme in the LTE-Advanced system.

An Energy Efficient Interference-aware Routing Protocol for Underwater WSNs

  • Khan, Anwar;Javaid, Nadeem;Ali, Ihsan;Anisi, Mohammad Hossein;Rahman, Atiq Ur;Bhatti, Naeem;Zia, Muhammad;Mahmood, Hasan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4844-4864
    • /
    • 2017
  • Interference-aware routing protocol design for underwater wireless sensor networks (UWSNs) is one of the key strategies in reducing packet loss in the highly hostile underwater environment. The reduced interference causes efficient utilization of the limited battery power of the sensor nodes that, in consequence, prolongs the entire network lifetime. In this paper, we propose an energy-efficient interference-aware routing (EEIAR) protocol for UWSNs. A sender node selects the best relay node in its neighborhood with the lowest depth and the least number of neighbors. Combination of the two routing metrics ensures that data packets are forwarded along the least interference paths to reach the final destination. The proposed work is unique in that it does not require the full dimensional localization information of sensor nodes and the network total depth is segmented to identify source, relay and neighbor nodes. Simulation results reveal better performance of the scheme than the counterparts DBR and EEDBR techniques in terms of energy efficiency, packet delivery ratio and end-to-end delay.

SEAMCAT Based Interference Evaluation Tool with 3D Terrain Display (3차원 지형 디스플레이 기능을 갖는 SEAMCAT 기반 전파 간섭 평가 도구)

  • Park, Sang Joon;Jeon, Jun Young;Lim, Chang Heon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.13-20
    • /
    • 2013
  • Currently, SEAMCAT has been widely used as a tool to evaluate the effects of interference among wireless communication systems. In the previous work, we have incorporated the ITU-R P.526 pathloss model to the existing SEAMCAT in order to support the capability of interference evaluation taking into account any specific terrain characteristics. Along with this, we have implemented a terrain display function based on the Google map. However, the two-dimensional Google map based display is not effective in helping users to figure out some terrain features including the elevation variation in a given region. In order to alleviate this difficulty, we have incorporated the three-dimensional terrain display using the API of the Google earth to the existing SEAMCAT and provided the capability of viewing the positions of the associated communication systems, the variation of the carrier intensity and interference intensity in location, shadow region indication, and line-of-sight analysis and presented an example of interference evaluation.

Estimation of Probability Distribution of L-Band Interference Environment Based on Field Measurement Data (전파 측정 데이터 기반 L 대역 간섭 환경 확률분포 추정)

  • Oh, Janghoon;Kim, Jong-Sung;Yoon, Dongweon;Park, Namhyoung;Choi, Hyogi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.22-28
    • /
    • 2017
  • In modern electronic warfare, a variety of devices are being operated in the fields for the purposes of communication and surveillance. Therefore, if such devices work in the same band, interference may occur and affect each other. Regarding L-band in which various devices including radar systems are operating, interference from existing devices may affect new ones in the band. In this paper, we estimate a probability distribution of the interference environment in L-band from the selected measurement data, which is fundamental for the mathematical analysis. After selecting the candidates of probability distribution, we suggest the best one from the group. The results of this study are expected to be utilized as fundamental data for the mathematical approach to the L-band interference environment.

Game Theoretic Approach for Joint Resource Allocation in Spectrum Sharing Femtocell Networks

  • Ahmad, Ishtiaq;Liu, Shang;Feng, Zhiyong;Zhang, Qixun;Zhang, Ping
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.627-638
    • /
    • 2014
  • In this paper, we study the joint price and power allocation in spectrum sharing macro-femtocell networks. The proposed game theoretic framework is based on bi-level Stackelberg game where macro base station (MBS) works as a leader and underlaid femto base stations (FBSs) work as followers. MBS has fixed data rate and imposes interference price on FBSs for maintaining its data rate and earns revenue while FBSs jointly adjust their power for maximizing their data rates and utility functions. Since the interference from FBSs to macro user equipment is kept under a given threshold and FBSs compete against each other for power allocation, there is a need to determine a power allocation strategy which converges to Stackelberg equilibrium. We consider two cases for MBS power allocation, i.e., fixed and dynamic power. MBS can adjust its power in case of dynamic power allocation according to its minimum data rate requirement and number of FBSs willing to share the spectrum. For both cases we consider uniform and non-uniform pricing where MBS charges same price to all FBSs for uniform pricing and different price to each FBS for non-uniform pricing according to its induced interference. We obtain unique closed form solution for each case if the co-interference at FBSs is assumed fixed. And an iterative algorithm which converges rapidly is also proposed to take into account the effect of co-tier interference on interference price and power allocation strategy. The results are explained with numerical simulation examples which validate the effectiveness of our proposed solutions.

Dynamic Inter-Cell Interference Avoidance in Self-Organizing Femtocell Networks (자가구성 펨토셀의 동적 셀간간섭 회피 기법)

  • Park, Sang-Kyu;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.259-266
    • /
    • 2011
  • Femtocells are expected as the surest way to increase the system capacity with higher-quality links and more spatial reuse in future networks. In spite of their great potential, the system capacity is highly susceptible to network density because a large portion of users are exposed to inter-cell interference (ICI). In this work, we proposed a dynamic interference avoidance scheme in densely deployed cell environments. Our proposed DDIA (Distributed Dynamic ICI Avoidance) scheme not only works in a fully distributed manner, but also controls interference link connectivity of users with high agility so that it is suited for self-organizing networks (SONs). We introduced the concept of ICI-link and two-tier scheduling in designing the DDIA scheme. To avoid ICI without any central entity, our scheme tries to harmonize all base stations (BSs) with users adaptively. Through extensive simulations, it was shown that our proposed scheme improves the throughput of users by more than twice on average compared to the frequency reuse factor 1 scheme, who are exposed to ICI while maintaining or even improving overall network performance. Our scheme operates well regardless of network density and topology.