• Title/Summary/Keyword: words frequency

Search Result 887, Processing Time 0.035 seconds

Textbooks Analysis to Select Vocabulary for Mathematics Education: Focusing on 1st and 2nd Graders in the Elementary School (교과서 분석 기반 수학교육용 어휘 선정 연구: 초등학교 1~2학년을 중심으로)

  • Kwon, Misun
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.675-695
    • /
    • 2023
  • To learn mathematics effectively, understanding vocabulary is essential. Accordingly, as a way to present vocabulary for mathematics education, high-frequency vocabulary was extracted from the 2009 revised 1st and 2nd grade mathematics textbooks and the 2015 revised 1st and 2nd grade mathematics textbooks. At this time, mathematics textbooks were analyzed by grade and semester, and vocabulary with a common frequency of 5 or more was extracted. In order to use it effectively in school settings, common vocabulary for each grade and intensive vocabulary for each semester were presented. As a result of the study, 61 vocabulary words for first grade education and 121 vocabulary words for second grade education were selected. As a result of analysis by vocabulary level, various levels of vocabulary from grades 1 to 5 were used. As a result of analysis by vocabulary type, the proportion of academic words increased similarly, but the proportion of technical words was found to be highest in the first semester of the second year. Based on these results, the extracted vocabulary for mathematics education is used as a resource for vocabulary instruction for students' mathematics education in each grade to help students learn mathematics.

A Study on the Perception of Fashion Platforms and Fashion Smart Factories using Big Data Analysis (빅데이터 분석을 이용한 패션 플랫폼과 패션 스마트 팩토리에 대한 인식 연구)

  • Song, Eun-young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.799-809
    • /
    • 2021
  • This study aimed to grasp the perceptions and trends in fashion platforms and fashion smart factories using big data analysis. As a research method, big data analysis, fashion platform, and smart factory were identified through literature and prior studies, and text mining analysis and network analysis were performed after collecting text from the web environment between April 2019 and April 2021. After data purification with Textom, the words of fashion platform (1,0591 pieces) and fashion smart factory (9750 pieces) were used for analysis. Key words were derived, the frequency of appearance was calculated, and the results were visualized in word cloud and N-gram. The top 70 words by frequency of appearance were used to generate a matrix, structural equivalence analysis was performed, and the results were displayed using network visualization and dendrograms. The collected data revealed that smart factory had high social issues, but consumer interest and academic research were insufficient, and the amount and frequency of related words on the fashion platform were both high. As a result of structural equalization analysis, it was found that fashion platforms with strong connectivity between clusters are creating new competitiveness with service platforms that add sharing, manufacturing, and curation functions, and fashion smart factories can expect future value to grow together, according to digital technology innovation and platforms. This study can serve as a foundation for future research topics related to fashion platforms and smart factories.

A study on the perception of 3D virtual fashion before and after COVID-19 using textmining

  • Cho, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.111-119
    • /
    • 2022
  • The purpose of this paper is to examine the change in perception of 3D virtual fashion before and after COVID-19 using big data analysis. The data collection period is from January 1, 2017, before the outbreak of COVID-19, to October 30, 2022, after the outbreak. Big data was collected for key words related to 3D virtual fashion extracted from social media such as Naver, Daum, Google, and YouTube using Textom. After the collected words were refined, word cloud, word frequency, connection centrality, network visualization, and CONCOR analysis were performed. As a result of extracting and analyzing 32,461 words with 3D virtual fashion as a keyword, the frequency and centrality of fashion, virtual, and technology appeared the highest, and the frequency of appearance of digital, design, clothing, utilization, and manufacturing was also high. Through this, it was found that 3D virtual fashion is being used throughout the industry along with the development of technology. In particular, the key words that stand out the most after COVID-19 are metaverse and 3D education, which are in high demand in the fashion industry.

Frequency Analysis of Scientific Texts on the Hypoxia Using Bibliographic Data (논문 서지정보를 이용한 빈산소수괴 연구 분야의 연구용어 빈도분석)

  • Lee, GiSeop;Lee, JiYoung;Cho, HongYeon
    • Ocean and Polar Research
    • /
    • v.41 no.2
    • /
    • pp.107-120
    • /
    • 2019
  • The frequency analysis of scientific terms using bibliographic information is a simple concept, but as relevant data become more widespread, manual analysis of all data is practically impossible or only possible to a very limited extent. In addition, as the scale of oceanographic research has expanded to become much more comprehensive and widespread, the allocation of research resources on various topics has become an important issue. In this study, the frequency analysis of scientific terms was performed using text mining. The data used in the analysis is a general-purpose scholarship database, totaling 2,878 articles. Hypoxia, which is an important issue in the marine environment, was selected as a research field and the frequencies of related words were analyzed. The most frequently used words were 'Organic matter', 'Bottom water', and 'Dead zone' and specific areas showed high frequency. The results of this research can be used as a basis for the allocation of research resources to the frequency of use of related terms in specific fields when planning a large research project represented by single word.

An evaluation of Korean students' pronunciation of an English passage by a speech recognition application and two human raters

  • Yang, Byunggon
    • Phonetics and Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.19-25
    • /
    • 2020
  • This study examined thirty-one Korean students' pronunciation of an English passage using a speech recognition application, Speechnotes, and two Canadian raters' evaluations of their speech according to the International English Language Testing System (IELTS) band criteria to assess the possibility of using the application as a teaching aid for pronunciation education. The results showed that the grand average percentage of correctly recognized words was 77.7%. From the moderate recognition rate, the pronunciation level of the participants was construed as intermediate and higher. The recognition rate varied depending on the composition of the content words and the function words in each given sentence. Frequency counts of unrecognized words by group level and word type revealed the typical pronunciation problems of the participants, including fricatives and nasals. The IELTS bands chosen by the two native raters for the rainbow passage had a moderately high correlation with each other. A moderate correlation was reported between the number of correctly recognized content words and the raters' bands, while an almost a negligible correlation was found between the function words and the raters' bands. From these results, the author concludes that the speech recognition application could constitute a partial aid for diagnosing each individual's or the group's pronunciation problems, but further studies are still needed to match human raters.

Building Hybrid Stop-Words Technique with Normalization for Pre-Processing Arabic Text

  • Atwan, Jaffar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.65-74
    • /
    • 2022
  • In natural language processing, commonly used words such as prepositions are referred to as stop-words; they have no inherent meaning and are therefore ignored in indexing and retrieval tasks. The removal of stop-words from Arabic text has a significant impact in terms of reducing the size of a cor- pus text, which leads to an improvement in the effectiveness and performance of Arabic-language processing systems. This study investigated the effectiveness of applying a stop-word lists elimination with normalization as a preprocessing step. The idea was to merge statistical method with the linguistic method to attain the best efficacy, and comparing the effects of this two-pronged approach in reducing corpus size for Ara- bic natural language processing systems. Three stop-word lists were considered: an Arabic Text Lookup Stop-list, Frequency- based Stop-list using Zipf's law, and Combined Stop-list. An experiment was conducted using a selected file from the Arabic Newswire data set. In the experiment, the size of the cor- pus was compared after removing the words contained in each list. The results showed that the best reduction in size was achieved by using the Combined Stop-list with normalization, with a word count reduction of 452930 and a compression rate of 30%.

Classification of Keywords of the papers from the Journal of Korean Academy of Nursing Administration(2002-2006) (간호행정학회지 게재논문 주요어 분석(2002년${\sim}$2006년))

  • Seomun, Gyeong-Ae;Kim, In-A;Koh, Myung-Suk
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.13 no.1
    • /
    • pp.118-122
    • /
    • 2007
  • Purpose: This study was to understand the major subjects of the recent nursing research in Nursing administration from keywords. Method: Keywords of journals were extracted and the frequency of the appearance of each key words was sorted by a descending order. Results: A total of 327 key words were used. The most frequently used key words were 'Job satisfaction', 'Organizational commitment', 'Leadership'. Out of them, organizational culture, nursing performance, nursing classification, patient satisfaction, and ethics appeared most frequently in descending order. Conclusion: From the above it can be noted that many nursing administration concepts were handled in the papers. But there were not enough papers on the characteristics of the Nursing administration. It is suggested that in depth research be made on 'Nursing error', 'Nursing informatics', 'Web based learning'.

  • PDF

Classification of Documents using Automatic Indexing (자동 색인을 이용한 문서의 분류)

  • 신진섭;장수진
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 1999
  • In this paper. we propose a new method for automatic classification of documents using the degree of similarity between words. First, we seek relevance terms using automatic indexing. Second, we found frequency in use words in documents and the degree of relevance between the words using probability model. Continuously, we extracted the set of words which is connected the relevance closely and created the profiles characterizing each classification And, with the profile we finally classified them. We experimented on classifying two groups of documents. Some documents were about Genetic Algorithm. The others were about Neural Network. The results of the experiments indicated that automatic classification with word accordance of degree enable us to manage the retrieved documents structurally.

  • PDF

Characteristics of Intermediate/Advanced Korean Inter-Englishes: A Corpus-Linguistic Analysis. (우리나라 중.상급학습자 영어의 특징 : 말뭉치 언어학적 분석)

  • 안성호;이영미
    • Korean Journal of English Language and Linguistics
    • /
    • v.4 no.1
    • /
    • pp.83-102
    • /
    • 2004
  • The purpose of this paper is to find out some major characteristics of intermediate-advanced Korean learners' English by corpus- linguistically analyzing their essays in comparison with native speakers'. We construct a corpus of CBT TOEFL essays by Korean learners, NNS1 (94076 words in 402 texts), and its sub-corpus, NNS2 (14291 words in 45 texts), and then a corpus of model essays written or meticulously edited by native speakers, NS (14833 words in 35 texts). We compare NNS1 and NNS2 with NS, and with some other corpora, in terms of high-frequency words, and show that Korean learners' writings have more features of informal writing than those of formal writing, which is in accord with the reports in Granger (1998) that EFL writings by European advanced learners are characterized by informality.

  • PDF

A Method of Calculating Topic Keywords for Topic Labeling (토픽 레이블링을 위한 토픽 키워드 산출 방법)

  • Kim, Eunhoe;Suh, Yuhwa
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.3
    • /
    • pp.25-36
    • /
    • 2020
  • Topics calculated using LDA topic modeling have to be labeled separately. When labeling a topic, we look at the words that represent the topic, and label the topic. Therefore, it is important to first make a good set of words that represent the topic. This paper proposes a method of calculating a set of words representing a topic using TextRank, which extracts the keywords of a document. The proposed method uses Relevance to select words related to the topic with discrimination. It extracts topic keywords using the TextRank algorithm and connects keywords with a high frequency of simultaneous occurrence to express the topic with a higher coverage.