• 제목/요약/키워드: word analysis

검색결과 2,157건 처리시간 0.029초

Forgery Detection Mechanism with Abnormal Structure Analysis on Office Open XML based MS-Word File

  • Lee, HanSeong;Lee, Hyung-Woo
    • International journal of advanced smart convergence
    • /
    • 제8권4호
    • /
    • pp.47-57
    • /
    • 2019
  • We examine the weaknesses of the existing OOXML-based MS-Word file structure, and analyze how data concealment and forgery are performed in MS-Word digital documents. In case of forgery by including hidden information in MS-Word digital document, there is no difference in opening the file with the MS-Word Processor. However, the computer system may be malfunctioned by malware or shell code hidden in the digital document. If a malicious image file or ZIP file is hidden in the document by using the structural vulnerability of the MS-Word document, it may be infected by ransomware that encrypts the entire file on the disk even if the MS-Word file is normally executed. Therefore, it is necessary to analyze forgery and alteration of digital document through internal structure analysis of MS-Word file. In this paper, we designed and implemented a mechanism to detect this efficiently and automatic detection software, and presented a method to proactively respond to attacks such as ransomware exploiting MS-Word security vulnerabilities.

한국어 단음절 낱말 인식에 미치는 어휘적 특성의 영향 (Analysis of Lexical Effect on Spoken Word Recognition Test)

  • 윤미선;이봉원
    • 대한음성학회지:말소리
    • /
    • 제54호
    • /
    • pp.15-26
    • /
    • 2005
  • The aim of this paper was to analyze the lexical effects on spoken word recognition of Korean monosyllabic word. The lexical factors chosen in this paper was frequency, density and lexical familiarity of words. Result of the analysis was as follows; frequency was the significant factor to predict spoken word recognition score of monosyllabic word. The other factors were not significant. This result suggest that word frequency should be considered in speech perception test.

  • PDF

Word Sense Disambiguation Using Embedded Word Space

  • Kang, Myung Yun;Kim, Bogyum;Lee, Jae Sung
    • Journal of Computing Science and Engineering
    • /
    • 제11권1호
    • /
    • pp.32-38
    • /
    • 2017
  • Determining the correct word sense among ambiguous senses is essential for semantic analysis. One of the models for word sense disambiguation is the word space model which is very simple in the structure and effective. However, when the context word vectors in the word space model are merged into sense vectors in a sense inventory, they become typically very large but still suffer from the lexical scarcity. In this paper, we propose a word sense disambiguation method using word embedding that makes the sense inventory vectors compact and efficient due to its additive compositionality. Results of experiments with a Korean sense-tagged corpus show that our method is very effective.

Impact of Word Embedding Methods on Performance of Sentiment Analysis with Machine Learning Techniques

  • Park, Hoyeon;Kim, Kyoung-jae
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권8호
    • /
    • pp.181-188
    • /
    • 2020
  • 본 연구에서는 다양한 워드 임베딩 기법이 감성분석의 성과에 미치는 영향을 확인하기 위한 비교연구를 제안한다. 감성분석은 자연어 처리를 사용하여 텍스트 문서에서 주관적인 정보를 식별하고 추출하는 오피니언 마이닝 기법 중 하나이며, 상품평이나 댓글의 감성을 분류하는데 사용될 수 있다. 감성은 긍정적이거나 부정적인 것으로 분류될 수 있기 때문에 일반적인 분류문제 중 하나로 생각할 수 있으며, 이의 분류를 위해서는 텍스트를 컴퓨터가 인식할 수 있는 언어로 변환하여야 한다. 따라서 단어나 문서와 같은 텍스트를 자연어 처리에서 벡터로 변형하여 진행하는데 이를 워드 임베딩이라고 한다. 워드 임베딩 기법은 Bag of Words, TF-IDF, Word2Vec 등 다양한 기법이 사용되고 있는데 지금까지 감성분석에 적합한 워드 임베딩 기법에 대한 연구는 많이 진행되지 않았다. 본 연구에서는 영화 리뷰의 감성분석을 위해 다양한 워드 임베딩 기법 중 Bag of Words, TF-IDF, Word2Vec을 사용하여 그 성과를 비교 분석한다. 분석에 사용할 연구용 데이터 셋은 텍스트 마이닝에서 많이 활용되고 있는 IMDB 데이터 셋을 사용하였다. 분석 결과, TF-IDF와 Bag of Words의 성과가 Word2Vec보다 우수한 것으로 나타났으며 TF-IDF는 Bag of Words보다 성과가 우수하였으나 그 차이가 매우 크지는 않았다.

Word2vec을 이용한 오피니언 마이닝 성과분석 연구 (Performance Analysis of Opinion Mining using Word2vec)

  • 어균선;이건창
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.7-8
    • /
    • 2018
  • 본 연구에서는 Word2vec을 머신러닝 분류기를 이용해 효율적인 오피니언 마이닝 방법을 제안한다. 본 연구의 목적을 위해 BOW(Bag-of-Words) 방법과 Word2vec방법을 이용해 속성 셋을 구성했다. 구성된 속성 셋은 Decision tree, Logistic regression, Support vector machine, Random forest를 이용해 오피니언 마이닝을 수행했다. 연구 결과, Word2vec 방법과 RF분류기가 가장 높은 정확도를 나타냈다. 그리고 Word2vec 방법이 BOW방법 보다 각 분류기에서 높은 성능을 나타냈다.

  • PDF

낱말 인식 검사에 대한 어휘적 특성의 영향 분석 (Analysis of Lexical Effect on Spoken Word Recognition Test)

  • 윤미선;이봉원
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 춘계 학술대회 발표논문집
    • /
    • pp.77-80
    • /
    • 2005
  • The aim of this paper was to analyze the lexical effects on spoken word recognition of Korean monosyllabic word. The lexical factors chosen in this paper was frequency, density and lexical familiarity of words. Result of the analysis was as follows; frequency was the significant factor to predict spoken word recognition score of monosyllabic word. The other factors were not significant. This result suggest that word frequency should be considered in speech perception test.

  • PDF

영어의 강음절(강세 음절)과 한국어 화자의 단어 분절 (Strong (stressed) syllables in English and lexical segmentation by Koreans)

  • 김선미;남기춘
    • 말소리와 음성과학
    • /
    • 제3권1호
    • /
    • pp.3-14
    • /
    • 2011
  • It has been posited that in English, native listeners use the Metrical Segmentation Strategy (MSS) for the segmentation of continuous speech. Strong syllables tend to be perceived as potential word onsets for English native speakers, which is due to the high proportion of strong syllables word-initially in the English vocabulary. This study investigates whether Koreans employ the same strategy when segmenting speech input in English. Word-spotting experiments were conducted using vowel-initial and consonant-initial bisyllabic targets embedded in nonsense trisyllables in Experiment 1 and 2, respectively. The effect of strong syllable was significant in the RT (reaction times) analysis but not in the error analysis. In both experiments, Korean listeners detected words more slowly when the word-initial syllable is strong (stressed) than when it is weak (unstressed). However, the error analysis showed that there was no effect of initial stress in Experiment 1 and in the item (F2) analysis in Experiment 2. Only the subject (F1) analysis in Experiment 2 showed that the participants made more errors when the word starts with a strong syllable. These findings suggest that Koran listeners do not use the Metrical Segmentation Strategy for segmenting English speech. They do not treat strong syllables as word beginnings, but rather have difficulties recognizing words when the word starts with a strong syllable. These results are discussed in terms of intonational properties of Korean prosodic phrases which are found to serve as lexical segmentation cues in the Korean language.

  • PDF

어절 분석 기반 형태소 분석 시스템 개발에 관한 연구 (A Study on the Development of a Practical Morphological Analysis System Based on Word Analysis)

  • 조현양;최성필;최재황
    • 정보관리학회지
    • /
    • 제18권2호
    • /
    • pp.105-124
    • /
    • 2001
  • 본 연구에서는 정보검색시스템의 성능향상을 위하여 기존에 연구되었던 다양한 어절 분석 기법들을 바탕으로 어절 분석 속도의 최대화, 형태소 분석기의 모듈화 및 구조화 그리고 형태소의 정확한 분석을 위한 한국어 어절 분석 시스템을 개발하였다. 본 연구에서 개발된 시스템은 어절 분석 속도를 높일 수 있는 최적의 알고리즘을 구현하였으며, 모듈화된 하부 시스템의 유기적이고 효율적인 결합에 중점을 두로 각 모듈별 성능 및 속도 검증이 가능하도록 하였다. 또한, 재귀적 복협명사 분석을 탈피하여 시스템 부하를 줄이고 다층적 수사 패턴 인식에 기반한 수사 형태소 분석 시스템을 개발하였다. 개발된 어절 분석 시스템을 이용하여 색인 시스템을 구성하고 이를 기반으로 실험을 하였다.

  • PDF

온라인 패션 구전에 따른 패션제품 관여와 인터넷 구매행동 (The Effect of Online Word-of-mouth on Fashion Involvement and Internet Purchase Behavior)

  • 송소진;황진숙
    • 한국의류학회지
    • /
    • 제31권3호
    • /
    • pp.410-419
    • /
    • 2007
  • The purposes of this study were to segment consumers by on-line word of month and to find the differences among the segmented groups in regard to fashion involvement, internet perceived risk, and internet purchase behavior. The subjects of this study were female consumers who were members of online cafe in Korea. The data were collected during October, 2004. The respondents returned the questionnaires through internet and 480 questionnaires were finally used in the data analysis. The statistical analyses used for the study were factor analysis, cluster analysis, t-test, and $X^2-test$. The results showed that word-of·mouth communication on internet(e-WOM) is composed of two factors, word-of-mouth transmission and word-of-mouth acceptance. These two factors were put under cluster analysis and were classified into two groups of the word-of·mouth communication: WOM group and non-WOM group. T-test showed that word-of-mouth communication groups were significantly different in regard to fashion involvement, internet perceived risk, and internet purchase behavior. For example, WOM group was more uncertain of their clothing choices, put more weight on the internal factors of clothing selection, and was a frequent purchaser of internet fashion products. Internet fashion business needs to implement the proper marketing strategies based on the results of the study.

한의학 고문헌 데이터 분석을 위한 단어 임베딩 기법 비교: 자연어처리 방법을 적용하여 (Comparison between Word Embedding Techniques in Traditional Korean Medicine for Data Analysis: Implementation of a Natural Language Processing Method)

  • 오준호
    • 대한한의학원전학회지
    • /
    • 제32권1호
    • /
    • pp.61-74
    • /
    • 2019
  • Objectives : The purpose of this study is to help select an appropriate word embedding method when analyzing East Asian traditional medicine texts as data. Methods : Based on prescription data that imply traditional methods in traditional East Asian medicine, we have examined 4 count-based word embedding and 2 prediction-based word embedding methods. In order to intuitively compare these word embedding methods, we proposed a "prescription generating game" and compared its results with those from the application of the 6 methods. Results : When the adjacent vectors are extracted, the count-based word embedding method derives the main herbs that are frequently used in conjunction with each other. On the other hand, in the prediction-based word embedding method, the synonyms of the herbs were derived. Conclusions : Counting based word embedding methods seems to be more effective than prediction-based word embedding methods in analyzing the use of domesticated herbs. Among count-based word embedding methods, the TF-vector method tends to exaggerate the frequency effect, and hence the TF-IDF vector or co-word vector may be a more reasonable choice. Also, the t-score vector may be recommended in search for unusual information that could not be found in frequency. On the other hand, prediction-based embedding seems to be effective when deriving the bases of similar meanings in context.