International journal of advanced smart convergence
/
v.8
no.4
/
pp.47-57
/
2019
We examine the weaknesses of the existing OOXML-based MS-Word file structure, and analyze how data concealment and forgery are performed in MS-Word digital documents. In case of forgery by including hidden information in MS-Word digital document, there is no difference in opening the file with the MS-Word Processor. However, the computer system may be malfunctioned by malware or shell code hidden in the digital document. If a malicious image file or ZIP file is hidden in the document by using the structural vulnerability of the MS-Word document, it may be infected by ransomware that encrypts the entire file on the disk even if the MS-Word file is normally executed. Therefore, it is necessary to analyze forgery and alteration of digital document through internal structure analysis of MS-Word file. In this paper, we designed and implemented a mechanism to detect this efficiently and automatic detection software, and presented a method to proactively respond to attacks such as ransomware exploiting MS-Word security vulnerabilities.
The aim of this paper was to analyze the lexical effects on spoken word recognition of Korean monosyllabic word. The lexical factors chosen in this paper was frequency, density and lexical familiarity of words. Result of the analysis was as follows; frequency was the significant factor to predict spoken word recognition score of monosyllabic word. The other factors were not significant. This result suggest that word frequency should be considered in speech perception test.
Determining the correct word sense among ambiguous senses is essential for semantic analysis. One of the models for word sense disambiguation is the word space model which is very simple in the structure and effective. However, when the context word vectors in the word space model are merged into sense vectors in a sense inventory, they become typically very large but still suffer from the lexical scarcity. In this paper, we propose a word sense disambiguation method using word embedding that makes the sense inventory vectors compact and efficient due to its additive compositionality. Results of experiments with a Korean sense-tagged corpus show that our method is very effective.
Journal of the Korea Society of Computer and Information
/
v.25
no.8
/
pp.181-188
/
2020
In this study, we propose a comparative study to confirm the impact of various word embedding techniques on the performance of sentiment analysis. Sentiment analysis is one of opinion mining techniques to identify and extract subjective information from text using natural language processing and can be used to classify the sentiment of product reviews or comments. Since sentiment can be classified as either positive or negative, it can be considered one of the general classification problems. For sentiment analysis, the text must be converted into a language that can be recognized by a computer. Therefore, text such as a word or document is transformed into a vector in natural language processing called word embedding. Various techniques, such as Bag of Words, TF-IDF, and Word2Vec are used as word embedding techniques. Until now, there have not been many studies on word embedding techniques suitable for emotional analysis. In this study, among various word embedding techniques, Bag of Words, TF-IDF, and Word2Vec are used to compare and analyze the performance of movie review sentiment analysis. The research data set for this study is the IMDB data set, which is widely used in text mining. As a result, it was found that the performance of TF-IDF and Bag of Words was superior to that of Word2Vec and TF-IDF performed better than Bag of Words, but the difference was not very significant.
Proceedings of the Korea Contents Association Conference
/
2018.05a
/
pp.7-8
/
2018
This study proposes an analysis of the Word2vec-based machine learning classifiers for the sake of opinion mining tasks. As a bench-marking method, BOW (Bag-of-Words) was adopted. On the basis of utilizing the Word2vec and BOW as feature extraction methods, we applied Laptop and Restaurant dataset to LR, DT, SVM, RF classifiers. The results showed that the Word2vec feature extraction yields more improved performance.
The aim of this paper was to analyze the lexical effects on spoken word recognition of Korean monosyllabic word. The lexical factors chosen in this paper was frequency, density and lexical familiarity of words. Result of the analysis was as follows; frequency was the significant factor to predict spoken word recognition score of monosyllabic word. The other factors were not significant. This result suggest that word frequency should be considered in speech perception test.
It has been posited that in English, native listeners use the Metrical Segmentation Strategy (MSS) for the segmentation of continuous speech. Strong syllables tend to be perceived as potential word onsets for English native speakers, which is due to the high proportion of strong syllables word-initially in the English vocabulary. This study investigates whether Koreans employ the same strategy when segmenting speech input in English. Word-spotting experiments were conducted using vowel-initial and consonant-initial bisyllabic targets embedded in nonsense trisyllables in Experiment 1 and 2, respectively. The effect of strong syllable was significant in the RT (reaction times) analysis but not in the error analysis. In both experiments, Korean listeners detected words more slowly when the word-initial syllable is strong (stressed) than when it is weak (unstressed). However, the error analysis showed that there was no effect of initial stress in Experiment 1 and in the item (F2) analysis in Experiment 2. Only the subject (F1) analysis in Experiment 2 showed that the participants made more errors when the word starts with a strong syllable. These findings suggest that Koran listeners do not use the Metrical Segmentation Strategy for segmenting English speech. They do not treat strong syllables as word beginnings, but rather have difficulties recognizing words when the word starts with a strong syllable. These results are discussed in terms of intonational properties of Korean prosodic phrases which are found to serve as lexical segmentation cues in the Korean language.
Journal of the Korean Society for information Management
/
v.18
no.2
/
pp.105-124
/
2001
The purpose of this study is to develop a Korean word analysis system, which can improve performance of IRS, based on various methods of word analysis. In this study we focused on maximizing the speed of Korean word analysis, modulizing each functional system and analyzing Korean morpheme precisely. The system, developed in this study, implemented optimal algorithm to increase the speed of word analysis and to verify speed and performance of each subsystem. In addition, the numeral analysis processing was achieved to reduce a system burden by avoiding recursive analysis of compound nouns, based on numeral pattern recognition.
Journal of the Korean Society of Clothing and Textiles
/
v.31
no.3
s.162
/
pp.410-419
/
2007
The purposes of this study were to segment consumers by on-line word of month and to find the differences among the segmented groups in regard to fashion involvement, internet perceived risk, and internet purchase behavior. The subjects of this study were female consumers who were members of online cafe in Korea. The data were collected during October, 2004. The respondents returned the questionnaires through internet and 480 questionnaires were finally used in the data analysis. The statistical analyses used for the study were factor analysis, cluster analysis, t-test, and $X^2-test$. The results showed that word-of·mouth communication on internet(e-WOM) is composed of two factors, word-of-mouth transmission and word-of-mouth acceptance. These two factors were put under cluster analysis and were classified into two groups of the word-of·mouth communication: WOM group and non-WOM group. T-test showed that word-of-mouth communication groups were significantly different in regard to fashion involvement, internet perceived risk, and internet purchase behavior. For example, WOM group was more uncertain of their clothing choices, put more weight on the internal factors of clothing selection, and was a frequent purchaser of internet fashion products. Internet fashion business needs to implement the proper marketing strategies based on the results of the study.
Objectives : The purpose of this study is to help select an appropriate word embedding method when analyzing East Asian traditional medicine texts as data. Methods : Based on prescription data that imply traditional methods in traditional East Asian medicine, we have examined 4 count-based word embedding and 2 prediction-based word embedding methods. In order to intuitively compare these word embedding methods, we proposed a "prescription generating game" and compared its results with those from the application of the 6 methods. Results : When the adjacent vectors are extracted, the count-based word embedding method derives the main herbs that are frequently used in conjunction with each other. On the other hand, in the prediction-based word embedding method, the synonyms of the herbs were derived. Conclusions : Counting based word embedding methods seems to be more effective than prediction-based word embedding methods in analyzing the use of domesticated herbs. Among count-based word embedding methods, the TF-vector method tends to exaggerate the frequency effect, and hence the TF-IDF vector or co-word vector may be a more reasonable choice. Also, the t-score vector may be recommended in search for unusual information that could not be found in frequency. On the other hand, prediction-based embedding seems to be effective when deriving the bases of similar meanings in context.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.