• Title/Summary/Keyword: word alignment

Search Result 47, Processing Time 0.032 seconds

Alignment of Hypernym-Hyponym Noun Pairs between Korean and English, Based on the EuroWordNet Approach (유로워드넷 방식에 기반한 한국어와 영어의 명사 상하위어 정렬)

  • Kim, Dong-Sung
    • Language and Information
    • /
    • v.12 no.1
    • /
    • pp.27-65
    • /
    • 2008
  • This paper presents a set of methodologies for aligning hypernym-hyponym noun pairs between Korean and English, based on the EuroWordNet approach. Following the methods conducted in EuroWordNet, our approach makes extensive use of WordNet in four steps of the building process: 1) Monolingual dictionaries have been used to extract proper hypernym-hyponym noun pairs, 2) bilingual dictionary has converted the extracted pairs, 3) Word Net has been used as a backbone of alignment criteria, and 4) WordNet has been used to select the most similar pair among the candidates. The importance of this study lies not only on enriching semantic links between two languages, but also on integrating lexical resources based on a language specific and dependent structure. Our approaches are aimed at building an accurate and detailed lexical resource with proper measures rather than at fast development of generic one using NLP technique.

  • PDF

The Effects of Syllable Boundary Ambiguity on Spoken Word Recognition in Korean Continuous Speech

  • Kang, Jinwon;Kim, Sunmi;Nam, Kichun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2800-2812
    • /
    • 2012
  • The purpose of this study was to examine the syllable-word boundary misalignment cost on word segmentation in Korean continuous speech. Previous studies have demonstrated the important role of syllabification in speech segmentation. The current study investigated whether the resyllabification process affects word recognition in Korean continuous speech. In Experiment I, under the misalignment condition, participants were presented with stimuli in which a word-final consonant became the onset of the next syllable. (e.g., /k/ in belsak ingan becomes the onset of the first syllable of ingan 'human'). In the alignment condition, they heard stimuli in which a word-final vowel was also the final segment of the syllable (e.g., /eo/ in heulmeo ingan is the end of both the syllable and word). The results showed that word recognition was faster and more accurate in the alignment condition. Experiment II aimed to confirm that the results of Experiment I were attributable to the resyllabification process, by comparing only the target words from each condition. The results of Experiment II supported the findings of Experiment I. Therefore, based on the current study, we confirmed that Korean, a syllable-timed language, has a misalignment cost of resyllabification.

The Effects of Misalignment between Syllable and Word Onsets on Word Recognition in English (음절의 시작과 단어 시작의 불일치가 영어 단어 인지에 미치는 영향)

  • Kim, Sun-Mi;Nam, Ki-Chun
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.61-71
    • /
    • 2009
  • This study aims to investigate whether the misalignment between syllable and word onsets due to the process of resyllabification affects Korean-English late bilinguals perceiving English continuous speech. Two word-spotting experiments were conducted. In Experiment 1, misalignment conditions (resyllabified conditions) were created by adding CVC contexts at the beginning of vowel-initial words and alignment conditions (non-resyllabified conditions) were made by putting the same CVC contexts at the beginning of consonant-initial words. The results of Experiment 1 showed that detections of targets in alignment conditions were faster and more correct than in misalignment conditions. Experiment 2 was conducted in order to avoid any possibilities that the results of Experiment 1 were due to consonant-initial words being easier to recognize than vowel-initial words. For this reason, all the experimental stimuli of Experiment 2 were vowel-initial words preceded by CVC contexts or CV contexts. Experiment 2 also showed misalignment cost when recognizing words in resyllabified conditions. These results indicate that Korean listeners are influenced by misalignment between syllable and word onsets triggered by a resyllabification process when recognizing words in English connected speech.

  • PDF

Judging Translated Web Document & Constructing Bilingual Corpus (웹 번역문서 판별과 병렬 말뭉치 구축)

  • Jee-hyung, Kim;Yill-byung, Lee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.787-789
    • /
    • 2004
  • People frequently feel the need of a general searching tool that frees from language barrier when they find information through the internet. Therefore, it is necessary to have a multilingual parallel corpus to search with a word that includes a search keyword and has a corresponding word in another language, Multilingual parallel corpus can be built and reused effectively through the several processes which are judgment of the web documents, sentence alignment and word alignment. To build a multilingual parallel corpus, multi-lingual dictionary should be constructed in each language and HTML should be simplified. And by understanding the meaning and the statistics of document structure, judgment on translated web documents will be made and the searched web pages will be aligned in sentence unit.

  • PDF

Exclusion of Non-similar Candidates using Positional Accuracy based on Levenstein Distance from N-best Recognition Results of Isolated Word Recognition (레벤스타인 거리에 기초한 위치 정확도를 이용한 고립 단어 인식 결과의 비유사 후보 단어 제외)

  • Yun, Young-Sun;Kang, Jeom-Ja
    • Phonetics and Speech Sciences
    • /
    • v.1 no.3
    • /
    • pp.109-115
    • /
    • 2009
  • Many isolated word recognition systems may generate non-similar words for recognition candidates because they use only acoustic information. In this paper, we investigate several techniques which can exclude non-similar words from N-best candidate words by applying Levenstein distance measure. At first, word distance method based on phone and syllable distances are considered. These methods use just Levenstein distance on phones or double Levenstein distance algorithm on syllables of candidates. Next, word similarity approaches are presented that they use characters' position information of word candidates. Each character's position is labeled to inserted, deleted, and correct position after alignment between source and target string. The word similarities are obtained from characters' positional probabilities which mean the frequency ratio of the same characters' observations on the position. From experimental results, we can find that the proposed methods are effective for removing non-similar words without loss of system performance from the N-best recognition candidates of the systems.

  • PDF

The Online Game Coined Profanity Filtering System by using Semi-Global Alignment (반 전역 정렬을 이용한 온라인 게임 변형 욕설 필터링 시스템)

  • Yoon, Tai-Jin;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.113-120
    • /
    • 2009
  • Currently the verbal abuse in text message over on-line game is so serious. However we do not have any effective policy or technical tools yet. Till now in order to cope with this problem, the online game service providers have accumulated a set of forbidden words and applied this list on the textual word used in on-line game, which is called 'Swear filter'. But young on-line game players easily avoid this filtering method by coining another words which is not kept in the list. Especially Korean is very easy to make new variations of a vulgar word. In this paper, we propose one smart filtering algorithm to identify newly coined profanities. Important features of our method include the canonical form transformation of coined profanities, semi-global alignment between in the level of consonant and vowel units. For experiment, we have collected more than 1000 newly coined vulgar words in on-line gaming sites and tested these word against our methods. where our system have successfully filtered more than 90% of those newly coined vulgar words.

A Hybrid Sentence Alignment Method for Building a Korean-English Parallel Corpus (한영 병렬 코퍼스 구축을 위한 하이브리드 기반 문장 자동 정렬 방법)

  • Park, Jung-Yeul;Cha, Jeong-Won
    • MALSORI
    • /
    • v.68
    • /
    • pp.95-114
    • /
    • 2008
  • The recent growing popularity of statistical methods in machine translation requires much more large parallel corpora. A Korean-English parallel corpus, however, is not yet enoughly available, little research on this subject is being conducted. In this paper we present a hybrid method of aligning sentences for Korean-English parallel corpora. We use bilingual news wire web pages, reading comprehension materials for English learners, computer-related technical documents and help files of localized software for building a Korean-English parallel corpus. Our hybrid method combines sentence-length based and word-correspondence based methods. We show the results of experimentation and evaluate them. Alignment results from using a full translation model are very encouraging, especially when we apply alignment results to an SMT system: 0.66% for BLEU score and 9.94% for NIST score improvement compared to the previous method.

  • PDF

Korean-English Non-Autoregressive Neural Machine Translation using Word Alignment (단어 정렬을 이용한 한국어-영어 비자기회귀 신경망 기계 번역)

  • Jung, Young-Jun;Lee, Chang-Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.629-632
    • /
    • 2021
  • 기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.

  • PDF

Analyzing Errors in Bilingual Multi-word Lexicons Automatically Constructed through a Pivot Language

  • Seo, Hyeong-Won;Kim, Jae-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.172-178
    • /
    • 2015
  • Constructing a bilingual multi-word lexicon is confronted with many difficulties such as an absence of a commonly accepted gold-standard dataset. Besides, in fact, there is no everybody's definition of what a multi-word unit is. In considering these problems, this paper evaluates and analyzes the context vector approach which is one of a novel alignment method of constructing bilingual lexicons from parallel corpora, by comparing with one of general methods. The approach builds context vectors for both source and target single-word units from two parallel corpora. To adapt the approach to multi-word units, we identify all multi-word candidates (namely noun phrases in this work) first, and then concatenate them into single-word units. As a result, therefore, we can use the context vector approach to satisfy our need for multi-word units. In our experimental results, the context vector approach has shown stronger performance over the other approach. The contribution of the paper is analyzing the various types of errors for the experimental results. For the future works, we will study the similarity measure that not only covers a multi-word unit itself but also covers its constituents.

An Automatic Extraction of English-Korean Bilingual Terms by Using Word-level Presumptive Alignment (단어 단위의 추정 정렬을 통한 영-한 대역어의 자동 추출)

  • Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.6
    • /
    • pp.433-442
    • /
    • 2013
  • A set of bilingual terms is one of the most important factors in building language-related applications such as a machine translation system and a cross-lingual information system. In this paper, we introduce a new approach that automatically extracts candidates of English-Korean bilingual terms by using a bilingual parallel corpus and a basic English-Korean lexicon. This approach can be useful even though the size of the parallel corpus is small. A sentence alignment is achieved first for the document-level parallel corpus. We can align words between a pair of aligned sentences by referencing a basic bilingual lexicon. For unaligned words between a pair of aligned sentences, several assumptions are applied in order to align bilingual term candidates of two languages. A location of a sentence, a relation between words, and linguistic information between two languages are examples of the assumptions. An experimental result shows approximately 71.7% accuracy for the English-Korean bilingual term candidates which are automatically extracted from 1,000 bilingual parallel corpus.