• Title/Summary/Keyword: wood wastes

Search Result 110, Processing Time 0.024 seconds

Variation of Adenosine tri-Phosphate(ATP) in Fermentation-Extinction of Food Wastes with Wood Bio-Chip (목질바이오칩에 의한 음식물쓰레기 발효-소멸반응에서의 아데노신3인산의 변화)

  • Oh, Jeong-Ik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • The overall indicator of microbial activity in the fermentation-extinction reaction of food waste by using bio wood-chips were investigated by considering adenosine tri-phosphate(ATP). Degradation rate of organic compounds, which was represented by chemical oxygen demand(COD) and total nitrogen(TN), was increased with the concentration of adenosine tri-phosphate during fermentation-extinction reaction of food waste by using bio-wood chips. With this view, the ATP would be one of the overall evaluation indicator of organic degradation in the species of bio-wood chip for the fermentation-extinction of food waste.

An Experimental Study on the Basic Properties of Cement Boards of Waste Wood (폐목질을 사용한 시멘트보드의 기초적 특성에 관한 실험적 연구)

  • 황병준;김광기;박희곤;강태경;백민수;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.57-60
    • /
    • 2004
  • Recently. as the alternatives to preserve environment such as effective usage of wastes or unusable resources are drawing attentions, researches and measures for the two tasks, which are reuse of waste wood and development of eco-friendly materials, are being examined and established in various fields. However, they are still insufficient. Therefore, in this study, for the efficient application of waste woods and eco-friendly effects, mortar was produced using sawdust af the waste wood and mineral material cement for combination, in order to produce inorganic boards using waste woods, which were made when sawing. The present study purposed to analyze the physical and dynamic characteristics of woody cement boards, which were made by modifying water-cement ratio for each wood inclusion rate based on a hardening-accelerator inclusion rate set in previous studies and, based on the findings. to provide basic data about the physical properties of inorganic boards made of waste wood, in order to Produce woody cement boards using waste wood, which has problems in being used in the manufacturing of woody cement boards.

  • PDF

Vibration Analysis of Separation Screen for a Recycling of Construction Wastes (건설폐기물의 재활용을 위한 분리스크린의 진동해석)

  • Kim, K.K.;Kim, M.S.;Son, K.;Kim, K.H.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1057-1062
    • /
    • 2007
  • The purpose of this study is to find out design parameters of vibrating screen, such as particles motion, specific gravity, shape, and kinetic friction. In order to approach this problem, four materials of construction wastes, wood, styrofoam, concrete, and sand are used for dynamic modeling. To present friction between the particles material and tilt plates material, these particles model is applied in order to verify effectively. Generally, the vibrating screen is composed of three assemblies such as screen, wastes guide, supported of screen. This model regards vibrator as system of screen fixed tilt plates. The model is analyzed to present what kind of particles motion while the system is vibrating. and this vibration system has been implemented in a ADAMS dynamaic program. This modeling is consist of dynamic model separation state on particle size. This study make good technique to verify in theory.

  • PDF

Preliminary Study of Rapeseed Flour-based Wood Adhesives for Making Wood Flooring

  • Yang, In;Ahn, Sye-Hee;Choi, In-Gyu;Han, Gyu-Seong;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.451-458
    • /
    • 2011
  • Adhesives derived from renewable resources allow wood panel producers to make lower cost alternatives to formaldehyde-based adhesive resins. Among them, adhesive components extracted from industrial by-products or wastes are the most important research fields in the efficient utilization of waste and cost reduction. In our study, the rapeseed flour, which is a by product from the production of biodiesel extracted from rapeseed, was introduced to develop alternative adhesives for the production of wood flooring. The rapeseed flour was hydrolyzed with 1% sodium hydroxide solution and PF prepolymers were prepared with 3-molar ratios, 1.8, 2.1 and 2.4. The linear fracture mechanics was introduced to evaluate the glue bond quality in wood flooring composed of fancy-veneered and plywood, and the formaldehyde emission and adhesive penetration were also investigated. The formaldehyde emissions of wood flooring met the requirement of the standard of $SE_0$ specified in the KS standard. The rapeseed flour adhesive penetrated sufficiently into the vessel elements and lumens in fancy veneer and plywood and gave strong bond quality to the wood flooring. The fracture mechanics was introduced to evaluate the adhesive joint between fancy veneer and plywood. The critical stress intensity factor ($K_{IC}$) of boliva overlayed wood flooring was increased with increasing molar ratio and this was the same tendency in oak overlayed wood flooring. From the results, the formulated adhesives were efficiently used to bond fancy veneer onto the plywood to make wood flooring and showed a potential to be used as a component of environmentally friendly adhesive resin systems for production of flooring.

Comparison of Salinity and Composting Efficiency by Washing before and after Aerobic Composting of Food Wastes (음식물쓰레기의 호기성 퇴비화 전과 후의 세척에 따른 염분도와 퇴비화효율 비교)

  • Park Seok Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.160-164
    • /
    • 2005
  • This study was performed to evaluate the effects of washing food wastes before aerobic composting on temperature, pH and salinity, and the effects of washing after composting on salinity of sample mixtures. Weight ratios of food wastes to water in washing were 1:0(Control), 1:1(W-1), 1:2(W-2), 1:3(W-3) and 1:0(N-4), respectively. Ratios of food wastes to wood chips in reactor of Control, W-1, W-2, W-3 and N-1 were $5\;kg:0\iota,\;5\;kg:5\iota,\;5\;kg:5\iota,\;5\;kg:5\iota\;and\;5\;kg:5\iota$, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours of forced aeration per day. The increase in the ratio of water to food wastes resulted in the increase of the maximum reaction temperature and the shortening of the high temperature reaction period. The increase in the ratio of water to food wastes also resulted in faster reaching to the lowest pH and then to the steady state of pH 9.0. The final salinities of Control, N-1, W-1, W-2 and W-3 were $1.04\%,\;0.92\%,\;0.78\%,\;0.64\%\;and\;0.53\%$, respectively. The salinities of the N-l samples which were washed by the weight ratios (water:N-l) of 1:1, 2:1 and 3:1 after composting were $0.72\%,\;0.61\%\;and\;0.51\%$, respectively. Therefore, washing food wastes before aerobic composting is more efficient method than that after aerobic composting.

Changes of Physico-chemical Properties during the Composting of Korean Food Waste (음식물찌꺼기를 이용한 퇴비의 부숙과정중 이화학적 특성의 변화)

  • Chang, Ki-Woon;Lee, In-Bog;Lim, Jae-Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • This study was conducted to estimate the stabilization degree of compost which made from Korean food wastes. To make the compost, food wastes were mixed with dried paper sludge, sawdust and the rotten wood waste which had cultivated mushrooms, and then mixture was composted in $1.1m^3$ of chamber which installed with the blower for maintaining the aerobic condition. Y value, EC and pH were changed remarkably for the early stage of composting. These changes showed that the compost of food wastes could be stabilized within 30~35 days and that the substrate, food wastes, can be easily used as energy source for microorganisms. Although these phyico-chemical properties indicated that food wastes could be composted within 30 days during the composting, the temperature of pile maintained over $50^{\circ}C$ for 80 days, and C/N ratio decreased gradually for over 50 days. In conclusion, more than 50 days were required to stabilize the compost of food wastes.

  • PDF

A Study on the Promotion of Combustible Construction Waste Recycling (가연성 건설폐기물의 자원화 제고를 위한 방안)

  • Park, Ji-Sun;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The current enforce decree of "The Act on the Promotion of Construction Waste Recycling" divides seventeen kinds of construction wastes by property and configuration. Mixed construction waste, one of them classified by the enforce decree, is composed two more than justified construction wastes except refuse soil and rock. In construction wastes justified by enforce decree of this law, most refuse concrete and asphalt concrete of construction wastes are recycled. As well as refuse metal is separated, sorted from bulk them, and merchandised for value. Finally this is used the secondary manufactured products. Even though combustible construction wastes like refuse wood, plastics, fiber can be recycled RDF(Refuse derived fuel) or RPF(Refuse plastic fuel) because of high caloric value and low heavy metal but most of them are discharged as mixed construction waste and then treated by treated by incineration and landfill. Therefore, to control construction waste flow efficiently, construction wastes are classifies first combustible, incombustible, mixed combustible, incombustible and etc. in this study. The combustible waste is consisted refuse wood, plastics, fiber and etc. and incombustible waste contains refuse concrete, asphalt, and etc. Mixed construction is construction waste that can not separate from mixed waste bulk with different kinds.

  • PDF

The method for the classification according to their kinds and the estimation of unit generation rate for promoting recycling of construction and demolition(c&d) debris (건설폐기물 재활용촉진을 위한 종류별 분류 및 발생원단위 산정 방안)

  • Lee, Hi Sun;Kim, Dong Sik
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.1
    • /
    • pp.86-100
    • /
    • 2008
  • It is needed to classify the kinds of construction and demolition(c&d) debris to 6 catagories of waste concrete, waste asphalt concrete, waste wood, scraps, combustible waste and incombustible waste in order to properly do a separate discharge and to estimate unit generation rate in construction site. Also, in this case, the unit treating cost for mixed wastes should be applied with the unit treating cost for combustible waste. The construction standard materials estimation data is used for basic data for estimating unit generation rate. The mixed wastes in this data should be classified to waste wood, combustible waste and incombustible waste, and their ratio is obtained by using the unit generation rate of Asia Pacific Environment and Management Institute and Seoul Metropolitan Development Institute. The waste amounts generated from newly-built construction can be obtained from multiplying the loss rate by the amount of materials used from construction standard estimation data. Also, those from dismantling construction can be obtained by subtracting waste amount generated during newly-built construction from total input amount of materials in newly-built construction. Those in two cases can be used in construction site. It can be used for estimating the amount generated and establishing the treating plan in the case of setting up the policy of waste management and doing the environment impact assessment.

  • PDF

Physical and Mechanical Properties of Wood Fiber-Polypropylene Fiber Composite Panel

  • Kim, Jee-Woong;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.36-46
    • /
    • 2001
  • This study was to find a way of reusing wood and plastic wastes, which considered as a troublesome problem to be solved in this age of mass production and consumption, in manufacturing wood fiber-polypropylene fiber composite panel. And the feasibility of this composite panel as a substitute for existing headliner base panel of automobile was also discussed, especially based on physical and mechanical performance. Nonwoven web composite panels were made from wood fiber and polypropylene fiber formulations of 50 : 50, 60 : 40, and 70 : 30, based on oven-dry weight, with densities of 0.4, 0.5, 0.6, and 0.7 g/$cm^3$. At the same density levels, control fiberboards were also manufactured for performance comparison with the composite panels. Their physical and mechanical properties were tested according to ASTM D 1037-93. To elucidate thickness swelling mechanism of composite panel through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. Test results in this study showed that nonwoven web composite panel from wood fibers and polypropylene fibers had superior physical and mechanical properties to control fiberboard. In the physical properties of composite panel, dimensional stability improved as the content of polypropylene fiber increased, and the formulation of wood fiber and polypropylene fiber was considered to be a significant factor in the physical properties. Water absorption decreased but thickness swelling slightly increased with the increase of panel density. In the mechanical properties of composite panel, the bending modulus of rupture (MOR) and modulus of elasticity (MOE) appeared to improve with the increase of panel density under all the tested conditions of dry, heated, and wet. The formulation of wood fiber and polypropylene fiber was considered not to be a significant factor in the mechanical properties. All the bending MOR values under the dry, heated, and wet conditions met the requirements in the existing headliner base panel of resin felt.

  • PDF

An Experimental Study on the Development of Dry Wall System using Wood-wool Board (목모보드를 이용한 건식벽체시스템 개발에 대한 실험적 연구)

  • Kim, Dae-Hoi;Park, Soo-Young;Choi, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.208-215
    • /
    • 2008
  • Existent wood wool cement boards are low-quality cement boards made out of wood chip wastes. Recently, however, they are produced by making wood chips into fibrous forms to have good looks and excellent performances in sound absorption and thermal insulation. Though they have been broadly used in the advanced countries, they were rather expensive products with limited use in Korea having no domestic manufacturers of them. Since 2005, however, it has been possible for the boards to be used in various fields due to their lowered prices and stable supplies by the arrival of domestic manufacturers. For the purpose of encouraging broad use of the boards, this research aims to explore their practical applications by way of assessing the flame retardant and fire resistant performances when they are applied to dry-wall system.