• Title/Summary/Keyword: wood surface

Search Result 720, Processing Time 0.036 seconds

Change of Surface Temperature and Far-infrared Emissivity in Ceramics Manufactured from a Board Mixed with Sawdust and Mandarin Peel (톱밥·귤박 혼합보드로 제조한 세라믹의 표면온도 변화 및 원적외선방사 특성)

  • Hwang, Jung-Woo;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.66-79
    • /
    • 2019
  • The aim of the study is to use the by-products sawdust, formed during sawing and mandarin peel which are agricultural by products. The boards were manufactured by mixing the sawdust and mandarin peel at different mixing ratio and density. In terms of changes in surface temperature of ceramics, we could found that the velocity was fast in the early time of heat transfer until 10 minutes and after that the velocity increased but not very fast. At the elapsed time of 30 minutes, the surface temperature of ceramics increased with the carbonization temperature and rate of mandarin peel addition did not influence the surface temperature. Far - infrared emissivity had no constant tendency in rate of mandarin peel addition, it decreased with increase of carbonization temperature.

Chemical and Morphological Change and Discoloration of Cedar Wood Stored Indoor (실내 보관 삼나무 목재의 재색 및 화학적·현미경적 변화 특성)

  • Lee, Kwang Ho;Cha, Mi Young;Chung, Woo Yang;Bae, Hyeun-Jong;Kim, Yoon Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.566-577
    • /
    • 2009
  • The modification of wood color occurs rapidly during the service period at indoor. It is crucial to investigate the characteristics of color change, chemical and microscopical modification of wood at indoor. Wood products made of Japanese cedar at different years were used for this work. The tests were performed in order to evaluate the degree of color change of wood surface, breakpoint of brightness from surface to inside of wood, chemical analysis with FT-IR, and microscopical characteristics using the LM and TEM. Surface color of cedar wood stored indoor were rapidly changed at early stage, particularly ${\Delta}a$ (yellow), and ${\Delta}b$ (red) values were steeply decreased for one year old indoor wood, ${\Delta}L$ (white) value was dropped until 5 years old indoor wood compared with control sample. Decrease of peaks related to polysaccharide and lignin was noticed, especially, lignin was severely degraded. Although degradation of cell wall limited only to surface layers of indoor wood, degradation pattern of indoor wood showed similar degradation pattern to natural weathering of wood during outdoor weathering or wood behavior under artificial UV irradiation.

Thermal Environment Characteristics of Permeable Block Pavements for Landscape Construction (조경용 투수성 블록 포장의 열환경 특성)

  • Han Seung-Ho;Ryu Nam-Hyong;Kang Jin-Hyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.2 s.115
    • /
    • pp.18-25
    • /
    • 2006
  • This study aims to measure and to analyze the thermal environment characteristics of the various permeable pavement materials such as grass pavement (GREEN BLOCK PARK), stone and grass pavement (GREEN BLOCK STEP), stone pavement (GREEN BLOCK MOSAIC) and wood pavement (WOOD BLOCK) under the summer outdoor environment. The thermal environment characteristics measured in the study includes the changes of surface temperature during the day, changes of the temperature on each pavement layer, and long and short wave radiation of each pavement surface. The experimental condition is based on the data on the hottest temperature (August 5, 2005, $34.0^{\circ}C$) of the you. Some of main findings are: 1) The heat environment was worse on the wood pavements than on the stone pavement. This is mainly due to the low albedo of the wood pavements (0.37) while the albedo value of stone pavements is 0.41. Small heat capacity of the wood pavements also contributes to this difference. 2) The heat environment was worse on the stone pavements than on the turf pavements. This was mainly due to the evapotranspiration of the plant growth layer of the turf pavements. 3) The peak surface temperature was the highest on the wood pavements ($56.1^{\circ}C$). The peak surface temperatures on the stone pavements, the stone-grass pavements and the grass pavements were $43.1^{\circ}C,\;40.1^{\circ}C\;and\;37.9^{\circ}C$, respectively. 4) To improve the thermal environments in the urban area, it is recommended to raise the albedo of the pavements by brightening the surface color of the pavement materials. Further studies on the pavement materials and the construction methods which can enhance the continuous evapotranspiration from the pavements surface are needed.

Effect of Carbonization Temperature on the Surface Temperature of Carbonized Board (탄화온도가 탄화보드의 표면온도에 미치는 영향)

  • Oh, Seung-Won;Hwang, Jung-Woo;Park, Sang Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.60-66
    • /
    • 2018
  • For new use development of carbonized board, we investigated the effect of carbonization temperature on the surface temperature of carbonized board manufactured from a plywood, particle board, MDF, and wood of Fraxinus rhynchophylla at different carbonization temperature ($400^{\circ}C{\sim}1100^{\circ}C$). The surface temperature of carbonized board precipitously increased until 12 minutes elapsed, after smoothly increased and thereafter which were stable after 20 minutes. The higher carbonization temperature increased density of carbonized board and surface temperature of carbonized board so that density is considered to influence surface temperature change. Moreover, carbonized boards kept heat for a long time because the descent velocity of carbonized boards' surface temperature was slower than that of heater's.

Radial Variation of Sound Absorption Capability in the Cross Sectional Surface of Yellow Poplar Wood (백합나무 횡단면 흡음성능의 방사방향 변이)

  • Kang, Chun-Won;Lee, Youn-Hun;Kang, Ho-Yang;Kang, Wook;Xu, Huiran;Chung, Woo-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.326-332
    • /
    • 2011
  • Radial variation of sound absorption capability and air permeability of yellow poplar (Liriodendron tulipifera) wood in cross sectional surface and effect of steam explosion treatment were estimated by the two microphone transfer function method and the capillary flow porometry, respectively. The sound absorption coefficients of steam explosion treated wood was higher than those of control wood and these values increased with frequency. Abundant and big vessel may behave as sound absorbing pore observed on the cross sectional surface of yellow poplar wood. The sound absorption coefficients and air permeability of sapwood were higher than those of heartwood for Liriodendron tulipifera.

Chemical Modification of Japanese Cedar with 2-Methacryloyloxyethyl Isocyanate (2-메타크릴로일옥시에틸 이소시아네이트에 의한 삼나무재의 화학처리)

  • Han, Gyu-Seong;Setoyama, Kouichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.36-41
    • /
    • 2000
  • This study was carried out to introduce functional groups onto wood by reacting with 2-methacryloyloxyethyl isocyanate(MOI). The effects of the catalyst and the reaction conditions(temperature and time) on the treatment were investigated. The evidence of bonding between wood and MOI were examined by infrared(IR) spectroscopy. The change in surface characteristics of MOI treated wood was examined by water contact angle measurement and X-ray photoelectron spectroscopy(XPS). Wood reacted quickly with MOI in the presence of di-n-butiltin dilaurate catalyst. Especially, the increase in weight percent gain(WPG) with increasing in reaction time was remarkable at the reaction temperature of over $50^{\circ}C$. The IR spectrum of wood reacted with MOI showed a strong urethane absorption(1715 $cm^{-1}$) but no isocyanate(2235 $cm^{-1}$) absorption. It also showed a sharp olefinic C=C double bond absorption at 1635 $cm^{-1}$. This means that an introduced methacrylate group becomes the starting point of further graft copolymerization with another vinyl monomers. The wood modified with MOI showed a gradual increase in contact angle with increasing in WPG, which means that the hydrophilic wood surface become quite hydrophobic. Also, it was cleared that most parts of the wood surface were modified with MOI by XPS analysis.

  • PDF

Current Researches on The Weathering of Wood (목재의 기상열화에 관한 최근의 연구 동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.483-494
    • /
    • 2017
  • This was reviewed on the characteristics (changes of color, microscopic structures, and chemical degradations) that appears on wood surface, when wood is exposed to outdoors and weathering testing methods applicable for assessment of wood weatherability in outside environment through literature reviews.

Handsheet Property Changes by Internal Addition of Surface Strength Agent (표면강도 향상제 내첨에 따른 수초지 특성 변화)

  • Lim, Jong-Hyck;Jung, Chul-Hun;Chae, Hee-Jae;Park, Chang-Soon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.41-45
    • /
    • 2010
  • This study was performed to evaluate the effect of paper property changes by internal addition of surface strength agent on printability. Advances in printing technique has required the development of paper qualities in many aspects. Basically paper structure is composed of hydrogen bonds which induce many problems in high speed printing machine because of weak bonding strength. One of the important printing problems is surface picking when mechanical pulp or recycled pulp are used. It was caused by the ink-stained blanket in printing process because accumulations of pollutant in white water and other elements which are bonded weakly or do not have hydrogen bonds. Debris at paper surface adheres to blanket which deteriorates printing efficiency and causes various problems. To complement these problems, Pennocel 5137 of polysaccharide structure was used as an agent to improve paper's surface property, strength and printability. Paper surface picking was analyzed by RI-1 test. As the dosage amount increased tensile strength, fiber bonding strength and ZDT strength were improved. Further more formation, smoothness and surface picking resistance were improved. It was confirmed that when adding polysaccharide structure polymers to improve surface strength such as surface picking resistance, it was also possible to improve tensile strength, fiber bonding strength, formation and smoothness.

Effect of Hydroxypropyl Cellulose Treatment for Surface Stabilization of Waterlogged Wood of Wan-do Shipwreck Impregnated with Polyethylene Glycol (폴리에틸렌글리콜(PEG) 함침처리한 완도선 목재의 표면 안정화를 위한 하이드록시프로필 셀룰로오스(HPC) 처리효과)

  • Kim, Eung Ho;Han, Gyu Seong
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.155-165
    • /
    • 2016
  • This study aimed at verifying the effect of hydroxypropyl cellulose(HPC) treatment on polyethylene glycol(PEG)-treated waterlogged wood for surface stabilizing. This research investigated macroscopic and microscopic appearance, color change, weight change, and dimensional change. And effect of HPC was verified through variance analysis (ANOVA) and least significant difference test(LSD). HPC formed thin layer on the surface of wood specimen, and blocked the pore of tracheid and the gap between the crack. Specimens without deterioration showed no invisible change except HPC 1,000,000 treatment group. Whitening was appeared at the sound surface of HPC 1,000,000 treated wood. Specimens with deterioration showed a little color difference change by external moisture adsorption. Thin layer of HPC on the surface of wood specimen was maintained after the deterioration, and this HPC layer significantly suppressed the weight and dimensional change by moisture adsorption.

Development of Surface Improvement Technique of Japanese Larch Flooring Board(II) (낙엽송 마루판재의 표면강화 처리기술 개발(II))

  • Park, Sang-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.28-35
    • /
    • 2000
  • This paper deals with a coating technique for hardening surface layer of softwood(Larix leptolepis) flooring board to improve its surface properties such as hardness and abrasion resistance, Two coating methods were applied for surface hardening of the wood in this study. First, several functional monomers were added in UV-curing epoxy acrylate varnish. Secondly, unsaturated polyester varnish was used as under coat and acryl varnish including anti-abrasive agent was used as top coat. The hardness of the treated wood was similar to that of high density hardwood such as keruing by the first coating method. The abrasion resistance of the coated wood was greatly improved by the second method. Adhesion properties and impact resistance of the coated wood surface were also good. It was suggested that the well-coated softwood could be used as interior flooring board for heavy walking as substitute for hardwood.

  • PDF