• Title/Summary/Keyword: wood failure

Search Result 120, Processing Time 0.03 seconds

A study on the Compressive Strength of the Improved Skin-timber (개량 스킨팀버의 압축 강도에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.282-291
    • /
    • 2010
  • As compared with existing center-boring timber, skin timber which be hollowed out of its considerable inner parts has some merits as like short drying time, less developed checks during drying, a advantage of lower MC (8~%), more easy injection of chemicals, a possibility of using as a lighter structural heavy timber including Hanok and heavy timber construction, a possibility for the various living necessaries and furniture materials. However, development of hybrid skin timber is required for using as a value-added materials and giving a confidence for the structural safety of skin timber to general user. Thus, improved pine skin timber (IPST) and improved larch skin timber (ILST) were manufactured using the lighter steel plate possible. And compressive capacity of improved skin timber was analyzed. From the results of this study, the following conclusions have been made: 1. Both of IPST and ILST can give a uniformity of material capacity compared with non-treated skin timber. 2. Both IPST and ILST, there was not statistical significancy among the thickness of steel plate. Therefore, it concluded that it was not necessary to use thicker steel plate. 3. There was also not statistical significancy between IPSR and ILST, so it need not to be selective about the species of improved skin timber. 4. IPST showed various failure types, but most failure types of ILST is a splitting type.

A Study on the Block Shear Strength according to the Layer Composition of and Adhesive Type of Ply-Lam CLT (Ply-Lam CLT의 층재 구성 및 접착제 종류에 따른 블록전단강도에 관한 연구)

  • CHOI, Gyu Woong;YANG, Seung Min;LEE, Hyun Jae;KIM, Jun Ho;CHOI, Kwang Hyeon;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.791-806
    • /
    • 2020
  • In this study, a block shear strength test was conducted to compare and analyze the strength and failure mode on the glued laminated timber, CLT, and Ply-lam CLT, which are mainly used for the construction of wood construction as engineering wood. Through this, the Ply-lam CLT manufacturing conditions for optimum production, such as the type of lamina, plywood, adhesive, and layer composition, were investigated. The results are as follow. Through block shear strength test, it showed high strength in the order of glued laminated timber, Ply-lam CLT and CLT. In particular, the shear strength of Ply-lam CLT, which is made of a composite structure of larch plywood and larch lamina, passed 7.1 N/㎟, which is a Korean industrial standards for block shear strength of structural glued laminated timber. In addition, in this study, there was no different in shear strength according to the adhesive type used for glulam, CLT, and Ply-lam CLT adhesion. However, in the case of Ply-lam CLT, the difference in shear strength of Ply-lam CLT was shown according to the type of lamina and plywood. The results showed high strength in the order of Larix kaempferi > Mixed light hardwood ≒ Pinus densiflora, sieb, et, Zucc plywood. The optimal configuration of Ply-lam CLT is when larch plywood and larch lamina are used, and it is decided that the adhesive can be used by selecting PRF and PUR according to the application. The results of block shear strength failure mode by type of wood based materials were analyzed. The failure mode showed shear parallel-to-grain for glulam, rolling shear for CLT, and shear parallel-to-grain and rolling for ply-lam CLT. This is closely related to shear strength results and is decided to indicate higher shear strength in Ply-lam CLT than in CLT due to rolling shear.

Bearing Properties of Domestic Larix Glulam (국내산 낙엽송집성재의 지압특성)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.93-101
    • /
    • 2008
  • Bearing strength test was investigated to determine the bearing properties of domestic larix glulam according to the load direction (in parallel to grain and in perpendicular to grain), the fastener (bolt and drift-pin), and the direction of laminae. The specimen was 5 ply glulam. The diameters of fastener are 12, 16 and 20 mm. The results were as follows. 1) In according to the diameter of bolt and drift-pin, the average of maximum bearing strength in parallel to grain loading was similar to that in perpendicular to grain loading. The average of maximum bearing strength was 1.50~2.31 times higher in parallel to grain loading than in perpendicular to grain loading. The average of maximum bearing strength in parallel to grain loading was lowered by 20% with increasing the diameter from 16 mm to 20 mm, but that in perpendicular to grain loading didn't show a clear tendency. 2) The average of bearing stiffness in parallel to grain loading was the highest at 16 mm in diameter. The average of bearing stiffness is similar to the shearing stiffness in drift-pin connection with increasing diameter. 3) In parallel to grain loading, the failure mode of specimens was the splitting along the grain in decreasing diameter. The failure mode in perpendicular to grain loading was the splitting along the grain. In this case, split occured more in specimens using bolt than in those using drift-pin. 4) The 5% offset yield strength in parallel to grain loading was similar to the predicted bearing strength of KBCS, NDS. In perpendicular to grain loading, the NDS's equation can be applied to predict the bearing strength.

Effect of Adhesives and Finger Pitches on Bending Creep Performances of Finger-Jointed Woods

  • Park, Han-Min;Oh, Seong-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.57-65
    • /
    • 2005
  • Following our previous reports for finger-jointed woods with various finger profiles studied for the efficient use of small diameter logs and woods containing various defects, twelve types of finger-jointed woods glued with three kinds of adhesives and with two sizes of finger pitches were made with sitka spruce and red pine. The effects of the adhesives and finger pitches on bending creep performances of finger-jointed woods were investigated. The shape of creep curves differed among the used adhesives and finger pitches of finger-jointed woods for both tested species. Their creep curves showed a linear behavior beyond about one hour, and the N values fitted to power law increased with increasing finger pitches. The initial deformation increased with increasing finger pitches, regardless of the tested species and kinds of adhesives, whereas the effect of finger pitches on the creep deformation was not clear. For finger-jointed woods glued with polyvinyl acetate (PVAc) resin, creep failure occurred in 106 hours after the load was applied. And the difference of the creep compliance between finger-jointed woods glued with resorcinol-phenol formaldehyde (RPF) resin and aqueous vinyl urethane (AVU) resin was small. The ratios for creep performances of finger-jointed woods glued with RPF resin and AVU resin versus solid wood were higher in creep deformation than initial deformation for both species, and the difference between both adhesives was not found. The relative creep decreased with increasing finger pitches, and the marked differences was not found between RPF resin and AVU resin.

The Type Printing of First Ch'ing Dynasty Term (청대 전기의 활자인쇄)

  • Cho Hyung-Jin
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.29
    • /
    • pp.345-382
    • /
    • 1995
  • The type printing of first Ch'ing dynasty term in China is worthy to be studied because the type printing during that period included metal type, wood type, and clay type as well as the development phase was similar to Chosun dynasty culturally and technologically. This paper studied typography during the first Ch'ing dynasty term, including Shunzhi(1662-1722), Yongaheng(1723-1735), Qianlong(1736-1795), Jiaqing(1796­1820) period. The main results of the study is as follows. 1. The main body of type printing was bookstore, lecture-hall, and individual as well as the royal court that is the central government. 2. The content of type edition covers classics, history, philosophy, and literary works. Specifically, even though Wuyingdienjuzhenban series is excluded, the content includs study of the classics, class of the history, class of the philosophy, literature works that include collection works and novel and government official bulletin. 3. The printing technique of bronze type was very popular In Beijing. Jiangsu, and Taiwan. It's scale and production technique was more elaborate than in Ming dynasty. 4. Wood type was very popular in Beijing, Jiangsu, Zhejiang, Anhui, Sichuan, and Fujian. In addition to wood type, chinese ware type was applied to book printing in Shandong. However, most of them were wood type and they were used after Qianlong period. 5. The production technique of type was skilled enough to present the fine view of a style of type. The typesetting technique was improved as much as woodblock printing. With regard to the making technology of Chinese ink, the light and darkness of chinese ink was not even sometimes. But, the technology was improved significantly when comparing with the failure experience of printing that chinese ink was not developed in early type invention. 6. In case that the book was printed in bookstore with the intention of profit and the number of book was large, the proofreading attitude was rough. However, overally, it was made correction carefully applying the various methods of proofreading. 7. The support of government made a great contribution in the area of all printing technology, including production, typesetting, and brushing of type.

  • PDF

Reduction in Mechanical Properties of Radiata Pine Wood Associated with Incipient Brown-Rot Decay (초기(初期) 갈색부후(褐色腐朽)에 따른 라디에타소나무의 역학적(力學的) 성질(性質) 감소(減少))

  • Kim, Gyu-Hyeok;Jee, Woo-Kuen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.81-86
    • /
    • 1996
  • This study was performed to evaluate the reduction in bending properties of radiata pine sapwood associated with incipient brown-rot decay. Decayed bending specimens by Tyromyces palustris and Gloeophyllum trabeum for varoious periods were tested destructively. Brown-rot decay by T. palustris and G. trabeum caused serious reduction in bending properties at very early stages of decay, with about 30 percent decrease in bending strength observed for only 1~2 percent weight loss. In general, the reduction in bending properties caused by T. palustris was somewhat greater than that by G. trabeum. Work to maximum load was reduced most severely and rapidly from the onset of decay, while modulus of elasticity showed a much more moderate rate of reduction. Modulus of rupture was affected by decay to a greater extent than was modulus of elasticity. Since a relatively strong correlation between weight loss and bending strength was observed, the residual strength of decayed wood can be predicted by weight loss due to decay. The results of this study indicate that very early stages of brown-rot decay reduce the bending strength significantly. Thus, it is recommended that all load-bearing members in wooden structures, especially those that are periodically wetted, should be inspected regularly to prevent a sudden failure even though there are no definite signs of decay.

  • PDF

Results of Delamination Tests of FRP- and Steel-Plate-Reinforced Larix Composite Timber

  • LEE, In-Hwan;SONG, Yo-Jin;SONG, Da-Bin;HONG, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.655-662
    • /
    • 2019
  • This study evaluated the multi-bonding performances of timbers as well as those of reinforcement and timber to obtain data for preparing guidelines regarding the use of timbers as large structural members. For the multi-bonding performances of timbers, four types of bonding surfaces were prepared according to the pith position. For the bonding performances of FRP (fiber-reinforced plastic)/steel plate and timber, a total of 11 types of specimens were produced for the selection of the appropriate adhesive. The bonding performances of the produced specimens were evaluated through a water soaking delamination test, a water boiling delamination test, and a block shear strength test. The test results showed that the bonding strength of the bonding surface according to the pith position was highest in the specimen for which the two sections with the pith at the center of the cross-section on timber and between the bonding surfaces (the tangential and radial sections were mixed) were bonded. Furthermore, the specimens for which the section (radial section) with the pith on the bonding surface of the timber was bonded showed a high delamination percentage. The results of the block shear strength test showed that the bonding section did not have a significant effect on the shear strength, and that the measured wood failure percentage was higher than the KS standard value. The PVAc adhesive showed the highest bonding strength between larix timber and GFRP (glass FRP). Furthermore, the epoxy and polyurethane adhesives showed good bonding strength for CFRP (carbon FRP) and structure steel, respectively.

Change of Bending Properties of 2×4 Larch Lumber According to Span Length in the Four Point Bending Test (4점 휨 시험에서 지간 거리에 따른 2×4 낙엽송 제재목의 휨 성능 변화)

  • Kim, Chul-Ki;Kim, Kwang-Mo;Lee, Sang-Joon;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.486-496
    • /
    • 2018
  • This study was conducted to confirm an effect of span length on bending properties of larch dimensional lumber in the four point bending test. The size of specimen in this study was 38 (width) ${\times}$ 89 (depth) ${\times}$ 3,600 (length) $mm^3$, and average air-dry density and moisture content of the specimens was $543.5kg/m^3$ and 10.5%, respectively. Visually graded No. 1 dimensional lumbers of 248 were divided by two groups to compare modulus of rupture (MOR) and modulus of elasticity (MOE). One group was tested in the four point bending test with span length of 1,650 mm, and other was tested with span length of 3,000 mm. While MOE was not different according to span length in 5% significance level, MOR was different in accordance with span lengths and was in inverse proportion to change of span length. Fifth percentiles of MOR in span length of 1,650 and 3,000 mm were 28.65 and 25.70 MPa, respectively. It was confirmed that the difference between MORs in each case increased as normalized rank increased. This is because of size effect in Weibull weakest link failure theory. Therefore, KS F 2150, in which there is only regulation about span to depth ratio of 15 or more, is needed to be revised to contain a method considering size effect for MOR. From the method, various results of bending test with different size of lumber could be used to determine design value of lumber.

Bonding Performance of Glulam Reinforced with Glass Fiber-Reinforced Plastics (유리섬유강화플라스틱 복합집성재의 접착성능)

  • Park, Jun-Chul;Shin, Yoon-Jong;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.357-363
    • /
    • 2009
  • This study was carried out to investigate whether adhesive used in manufacturing glulam can be used to bond wood and GFRP, when considering working process and economical efficiency. The six different glulams were manufactured, changing the adhesives and the mixing ratios of the adhesives, and investigated by the block shear test and the delamination of the water soaking or boiling water soaking. The three glulams were manufactured, using the resocinol resin based adhesive, the PVAc resin based adhesive and the epoxy resin adhesive, and the other three glulams, using the adhesives mixing resocinol resin and PVAc resin. The block shear strength is higher than $7.1N/mm^2$ in all types, which is standard of KS F3021. However, in the wood failure the block shear strength was the highest as 65.9% in the PVAc. The delamination of glulams glued with PVAc adhesive, which was 1.08% in water soaking and 4.16% in boiling water soaking, was lower than 5.00% which is the standard of KS F 3021, and the adhesive strength is good. In glulams glued with only resocinol resin adhesive, the wood layers were good as 1.26% in the water soaking delamination and 0.00% in the boiling water soaking delamination. The GFRP layers were not good as 21.85% in the water soaking delamination but were good as 1.45% in the boiling water soaking delamination.

Effect of Changing of Filling Materials in NR-SBR Type Elastomer Based Rubber Materials on Mechanical Properties (필러재료의 변화에 따른 NR-SBR 타입 엘라스토머 기반 고무재료의 기계적물성)

  • Bulbul, Saban;Yasar, Mustafa;Akcakale, Nuretttin
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.664-670
    • /
    • 2014
  • The effects of different filling materials and stabilizers in polymer based materials that are used as shoe soles in the shoemaking industry on the mechanical properties (strength, failure, tensile, tearing, bending etc.) of the final products have been examined in this study. Natural rubber (NR RSS3) and styrene-butadiene rubber (SBR 1502) were used as the main matrix material. New compounds were formed by replacing the fillings in the general compound of the existing factory ($SiO_2$, $CaCO_3$) with 40% (1200 g) blast furnace flue dust, rice husk, reclaimed rubber (recycled) and wood ash. Comparison of the new compounds with the existing compounds revealed a decrease in hardness, density, dimension stability, bending, tearing, % elongation and failure strength and an increase in wearing.