• Title/Summary/Keyword: wood burning

Search Result 83, Processing Time 0.019 seconds

Studies on Fire-Retardant-Treatment and Press Drying of Plywood (합판(合板)의 내화처리(耐火處理)와 열판건조(熱板乾燥)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.5-37
    • /
    • 1982
  • Plywood used for construction as a decorative inner material is inflammable to bring large fire accidents and burn out human life and their properties. To diminish the fire disaster, fire retardant plywood has been required indeed. In the methods of manufacturing the fire retardant plywood the soaking method is occasionally used. However after soaking plywood into fire retardant chemical solutions, redrying of soaked plywood is the most important. In this study, 3.5mm thin and 5.0mm thick plywoods were selected for fire retardant treatment. Treating solutions were prepared for 20% dilute solutions of ammonium sulfate, monoammonium phosphate, diammonium phosphate, borax-boric acid and minalith, and water solution. 1-, 3-, 6-, and 9 hour-soaking treatments were applied and after treatments hot plate drying was applied to those treated plywoods at $90^{\circ}C$, $120^{\circ}C$ and $150^{\circ}C$, of press temperature. Drying rates, drying curves, water absorption rates of fire retardant chemicals, weight per volume and fire retardant degree of plywood were investigated. The results may be summarized as follows: 1. The plywoods treated with ammonium sulfate, monoammonium phosphate and diammonium phosphate and diammonium phosphate showed increase of chemical absorption rate with proportion to increase of treating time, but not in case of the plywood treated with borax-boric acid and minalith. 2. In the treatment of definite time, the absorption rate per unit of volume of plywood showed higher in thin plywood (thickness of 3.5mm) than in thick plywood (thickness of 5.0mm). In both thin and thick plywoods, the highest absorption rate was observed in 9 hour-treatment of ammonium sulfate. The value was 1.353kg/$(30cm)^3$ in thin plywood and 1.356kg/$(30cm)^3$ in thick plywood. 3. The volume per weight of plywood after chemical treatment increased remarkably and. after hot plate drying, the values were to a little extent higher than before chemical treatment. 4. The swelling rates of thickness in chemical-treated plywoods increased similarly with that of water-treated plywood in 1- and 3 hour-treatment of both thin and thick plywoods. But in 6- and 9 hour-treatment, the greater increased value showed in water-treated ply wood than any other chemical, especially in thick plywood. 5. The shrinkage rates after hot plate drying showed the same tendency as the swelling rate, and the rate showed the increasing tendency with proportion to increase of treating time in thick plywood of both chemical and water treatments. 6. Among drying curves, the curves of water-treated plywood placed more highly than chemical-treated plywood without-relation to thickness in 6- and 9 hour-treatment except in 1- and 3 hour-treatment. 7. The drying rate related to thickness of treated plywood, was twice above in thin plywood compared with thick plywood. 8. The drying rate remarkably increased with proportion to increase of the plate temperature and, the values were respectively 1.226%/min., 6.540%/min., 25.752%/min. in hot plate temperature of $90^{\circ}C$, $120^{\circ}C$, $150^{\circ}C$ in thin plywood and 0.550%/min., 2.490%/min, 8.187%/min, in hot plate temperature of $90^{\circ}C$, $120^{\circ}C$, $150^{\circ}C$ in thick plywood. 9. In the treatment at $120^{\circ}C$ of hot plate temperature, the drying rates of chemical-treated plywood showed the highest value in monoammonium phosphate of thin plywood and in diammonium phosphate of thick plywood. But the drying rate of water-treated plywood was highest in 6- and 9 hour-treatment. 10. The fire retardant degree of chemical-treated plywood was higher than that of the untreated plywood as shown in loss of weight, burning time, flame-exhausted time and carbonized area. 11. The fire-retardant effect among fire retardant chemicals were the greatest in diammonium phosphate, the next were in monoammonium phosphate and ammonium sulfate, and the weakest were in borax-boric and minalith.

  • PDF

Techniques and Traditional Knowledge of the Korean Onggi Potter (옹기장인의 옹기제작기술과 전통지식)

  • Kim, Jae-Ho
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.2
    • /
    • pp.142-157
    • /
    • 2015
  • This study examines how traditional knowledge functions in the specific techniques to make pottery in terms of the traditional knowledge on the pottery techniques of Onggi potters. It focuses on how traditional pottery manufacturing skills are categorized and what aspects are observed with regard to the techniques. The pottery manufacturing process is divided into the preparation step of raw material, the molding step of pottery, and the final plasticity step. Each step involves unique traditional knowledge. The preparation step mainly comprises the knowledge on different kinds of mud. The knowledge is about the colors and properties of mud, the information on the regional distribution of quality mud, and the techniques to optimize mud for pottery manufacturing. The molding step mainly involves the structure and shape of spinning wheels, the techniques to accumulate mud, ways to use different kinds of tools, the techniques to dry processed pottery. The plasticity step involves the knowledge on kilns and the scheme to build kilns, the skills to stack pottery inside of the kilns, the knowledge on firewood and efficient ways of wood burning, the discrimination of different kinds of fire and the techniques to stoke the kilns. These different kinds of knowledge may be roughly divided into three categories : the preparation of raw material, molding, and plasticity. They are closely connected with one another, which is because it becomes difficult to manufacture quality pottery even with only one incorrect factor. The contents of knowledge involved in the manufacturing process of pottery focused are mainly about raw material, color, shape, distribution aspect, fusion point, durability, physical property, etc, which are all about science. They are rather obtained through the experimental learning process of apprenticeship, not through the official education. It is not easy to categorize the knowledge involved. Most of the knowledge can be understood in the category of ethnoscience. In terms of the UNESCO world heritage of intangible cultural assets, the knowledge is mainly about 'the knowledge on nature and universe'. Unique knowledge and skills are, however, identified in the molding step. They can be referred to 'body techniques', which unify the physical stance of potters, tools they employ, and the conceived pottery. Potters themselves find it difficult to articulate the knowledge. In case stated, it cannot be easily understood without the experience and knowledge on the field. From the preparation of raw material to the complete products, the techniques and traditional knowledge involved in the process of manufacturing pottery are closely connected, employing numerous categories and levels. Such an aspect can be referred to as a 'techniques chain'. Here the techniques mean not only the scientific techniques but also, in addition to the skills, the knowledge of various techniques and levels including habitual, unconscious behaviors of potters.

Ecological Studies on the Burned Forest - On the Germination of Remained Seed on Burned Area - (산화적지(山火跡地)의 생태학적(生態學的) 연구(硏究) - 산화후(山火後)의 잔여종자(殘餘種子) 발아율(發芽率)에 대(對)하여 -)

  • Kim, Ok Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.10 no.1
    • /
    • pp.29-39
    • /
    • 1970
  • Forest fires often destory forests that have taken years to grow in a few minutes. Forest fire therefore, is an important problem in forest management and have caused heavy losses to the nations economy. In order to resolve this problem many investigations have been made in many countries. However, ecological studies on the forest after accidental fire have not yet been made in Korea. In order to conduct such a study, a burned area on Mt. Samak which is located at Dukduwon-ri, Seo-myon, Chunsung-gun, Kangwon-do, was chosen as experimental plot in 1967. The remaining seeds were collected from the burned area, and investigations on their germination rate and their productivity were made comparing to those of the seeds of undemaged area, and following results were obtained. 1. The number of seed collected from the control plots were 740 while it was 537 from the test plots (Table 3, 4). It was considered that this difference between burned and unburned area was mainly due to the fact that some of the seeds had been burnt by the fire, and the unfavorable environmental conditions in the burned area was also considered to be a reason. In the germination rate in the control plots showed 28.1% while it was 3.2% in the test plots. This difference was considered to be due to complete loss of viability of the seed by burning and high heat. 2. In the test plots, sixteen seeds of the Alnus japonica were collected and six of these seeds germinated (index number 100) which was the highest germination rate among the species of collected seeds. From these results, it was considered that a high temperature (above $150^{\circ}C$) caused reduction of the germination rate (Quadrat. 1.2). Seeds of Carex lanceolata var. Nana, were appeared much more in the higher plots than in the lower plots and it seemed to be due to the fact that the forest floor plants were much more abundant in the lower plots than in the higher plots which is covered with shrubbery. And some small seeds midght be able to avoid the effect of fire being burried in the soil or under the gravel. 3. With Pinus densiflora, 43 seeds were collected, and 11 of these germinated in the control plots. However in the test plots, 11 seeds were collected and no seed germinated. This shows that the Pinus densiflora was the weakest in resisting to heat among the observed species in this study. 4. Without exception the germination rate showed a higher index in the herbs than in the woody plants and it is believed that the herbs produced more seed than the wood plants because of the abundance of herbs colony.

  • PDF