• Title/Summary/Keyword: withstand voltage

Search Result 149, Processing Time 0.032 seconds

PD Measure and UV Detection in according to Withstand Voltage Characteristics of Polymer Insulator (폴리머 애자의 내전압 특성에 따른 부분방전 측정과 자외선 검출)

  • Shong, Kil-Mok;Kim, Young-Seok;Kim, Jong-Seo;Jung, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.76-77
    • /
    • 2008
  • The purposes of this paper ensure for the economical efficiency, accuracy, and good applications in domestic site set up the power installations. For the efficient conduct of these purposes, there are measured the partial discharge(PD) used by current probe and compared with detected signal of UV sensor. As the results, PD generated about 35% of breakdown voltage in polymer insulator. UV signal due to high voltage in polymer insulator is detected from about 1.7mV at 30kV to about 3mV at 70kV. Signal detected by ultra-sonic is increased at about 75% of breakdown voltage abruptly. It appears that error range is increased in boundary. UV sensor is needed must use from the practical and economical points of view.

  • PDF

A Study on the Step Response Characteristics in Shielded Resistor Divider for Switching Impulse Voltage (개폐 충격전압 측정용 쉴드 저항분압기의 직각파 특성에 관한 연구)

  • Kim, Ik-Su;Lee, Hyeong-Ho;Jo, Jeong-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.777-784
    • /
    • 1999
  • Since the ultra-high voltage power apparatus are recommended to withstand switching surge generated from the electric power system, the switching impulse voltage is generally used to verify this requirement at the testing laboratories. Recently, the international standard(IEC 60060-2) related to the high voltage measurement techniques is revised requiring a traceability of measuring system for high voltage measurements. In this paper, a reference divider for switching impulse voltage is developed satisfying the revised. IEC standard and the possibility of applications has been investigated. Therefore, the characteristics of the high and low voltage side resistor and the shielding ring have been analyzed including the step response characteristics of the prototype divider. Throughout various efforts, it is confirmed that our measuring device has shown compatible characteristics as a reference divider.

  • PDF

Breakdown Voltage and PD Characteristics of $SF_6/CF_4$ Mixtures in Nonuniform Field (불평등 전계에서 $SF_6/CF_4$ 혼합가스의 절연내력과 PD특성)

  • Hwang, Cheong-Ho;Sung, Heo-Gyung;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.635-640
    • /
    • 2008
  • New gas mixtures are now finding applications such as interrupting media for high-voltage circuit breakers. These mixtures consist of a high content of carbon tetrafluoride($CF_4$) added to sulfur hexafluoride($SF_6$). Nowdays $SF_6$ has been established for the use in gas insulated substations due to its high insulation withstand level and good arc quenching capability. At this paper Breakdown characteristics were investigated for $SF_6/CF_4$ mixtures when AC voltage and standard lightning impulse voltage(LI) was applied in a needle-plane electrodes. And partial discharge(PD) experiments were carried out in the test chamber which was made in needle-plane electrode. And ${\Phi}$-Q-N distribution of partial discharge signals was analyzed. The total pressure of the $SF_6/CF_4$ mixtures was varied within the range of 0.1-0.5 Mpa in the test chamber. The breakdown voltage in needle-plane electrode displayed N shape characteristics for increasing the content of $SF_6$ at positive impulse voltage and the PD inception voltage was increased slightly when pressure of $SF_6/CF_4$ Mixtures was increased. Maximum PD inception voltage is showed in 80% SF6/20%$CF_4$.

Stability Enhancement of a Hybrid Micro-grid System in Grid Fault Condition

  • Ambia, Mir Nahidul;Al-Durra, Ahmed;Caruana, Cedric;Muyeen, S.M.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • Low voltage ride through capability augmentation of a hybrid micro-grid system is presented in this paper which reflects enhanced reliability in the system. The control scheme involves parallel connected multiple ac-dc bidirectional converters. When the micro-grid system is subjected to a severe voltage dip by any transient fault single power converter may not be able to provide necessary reactive power to overcome the severe voltage dip. This paper discusses the control strategy of additional power converter connected in parallel with main converter to support extra reactive power to withstand the severe voltage dip. During transient fault, when the terminal voltage crosses 90% of its pre-fault value, additional converter comes into operation. With the help of additional power converter, the micro-grid system withstands the severe voltage fulfilling the grid code requirements. This multiple converter scheme provides the micro-grid system the capability of low voltage ride through which makes the system more reliable and stable.

Experimental Examinations on Protective Effects of SPDs Associated with the Protective Distance and Type of Load (보호거리와 부하 유형에 따른 SPD의 보호효과에 대한 실험적 고찰)

  • Lee, Bok-Hee;Kim, You-Ha;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.81-88
    • /
    • 2012
  • Surge protective devices(SPDs) are widely used as a most effective means protecting the electrical and electronic equipment against overvoltages such as lightning and switching surges. When installing SPDs, it is essential that the voltage protection level provided by SPDs should be lower than the withstand voltage of the equipment being protected. But even the proper selection of SPDs are achieved, the voltage at the equipment terminal may be higher than the residual voltage of SPD due to the reflection and oscillation phenomena. This paper was focused on the investigations of the conditions for which the equipment is protected by an SPD taking into account the influences of the protective distance and type of load. The protective effects of SPD with voltage-limiting component were analyzed as functions of types of load and protective distance between the SPD and load. As a result, in the cases of long protective distances, capacitive loads and loads with high resistance, the voltage at the load terminal was significantly higher than the residual voltage of SPD. It was found that the proper installation of SPDs should be carried out by taking into account the protective distance and type of load to achieve reliable protection of electronic equipments against surges.

Electrical Breakdown Characteristics of N2 Gas under Impulse Voltages (임펄스전압에 대한 N2가스의 절연파괴특성)

  • Shin, Hee-Kyoung;Kim, Dong-Kyu;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.131-136
    • /
    • 2011
  • This paper aims to examine the possibility of using an environmentally friendly $N_2$ as an alternative gas to $SF_6$. For this purpose, we have investigated breakdown characteristics of $N_2$ under impulse voltages in a quasi-uniform electric field gap. The 1.2/50[${\mu}s$] lightning impulse voltage, switching impulse voltages and oscillatory impulse voltages were applied at the test gap. The electric field utilization factor ranges from 0.5 to 0.8. The experimental data of $SF_6$ and $N_2$ acquired in the same experimental condition are presented in parallel for comparison. As a result, the breakdown voltages in $SF_6$ and $N_2$ are linearly increased with the gas pressure, also the breakdown voltages in $N_2$ are increased with increasing the gap distance and electric field utilization factor. The positive breakdown voltages are higher than the negative breakdown voltages. The nagative basic lightning impulse withstand level of 150[kV] in $N_2$ of about 0.5[MPa] is nearly equal to that in $SF_6$ of 0.15[MPa]. It is seen from the results obtained in this work that $N_2$ can be used as an eco-friendly alternative gas to $SF_6$ in distribution power equipment.

A Study of Lightning Impulse Operating Duty and Temperature Dependence of Series Gap Type Arrester (Series Gap Type 피뢰기의 뇌임펄스 동작책무 및 온도의존성에 관한 연구)

  • Cho, Han-Goo;Yoo, Dae-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.659-664
    • /
    • 2009
  • This paper describes lightning impulse operating duty performance and temperature dependence of series gap type for transmission line arresters. The ageing parameters of lightning arresters are impulse current, moisture ingress, temperature ageing and so on. Especially it is important to estimate the change of electrical characteristics by lightning impulse current. In the discharge withstand test, total energy applied to the ZnO arrester each time is 4/10 ${\mu}s$, 30 kA. and in the operating duty test, the arrester has passed the test if thermal stability is achieved, if the residual voltage measured before and after the test is not changed by more than 5 %, and after the test reveals no evidence of puncture, flashover or cracking of the ZnO block. As a results, the residual voltage was in the range of 17.2${\sim}$20.3 kV and ZnO block bear up against at 2 shot of series impulse current of 30 kA. Also it was so excellent that the mechanical destruction does not occur at the 2 groups of 5 impulses current of 2/20 ${\mu}s$ 10 kA. According to the tests, it is thought that the ZnO arrester shows good stability with impulse current test. and it was found that the ambient temperature is increased resistive leakage current was increased in the range 47.3${\sim}$167.4 ${\mu}A$.

Study on Current Conditioning Process for Improving Withstand Voltage Performance of Vacuum Interrupter (진공인터럽터의 내전압 성능 향상을 위한 전류컨디셔닝 기법 연구)

  • Cha, Young-kwang;Lee, IL-Hoi;Jeon, Ki-Beom;Jang, Ji-Hoon;Ju, Heung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.480-487
    • /
    • 2022
  • As a process to improve the insulation performance of VIs (Vacuum Interrupters), AC voltage conditioning is generally adopted by many manufacturers. Although the insulation performance is enhanced easily with AC Voltage conditioning, it has limitations when high recovery voltage is required due to high voltage rate or capacitive current switching. In particular, impurities such as oxides segregated on the electrode surface can be removed not by the energy level of the voltage conditioning but by the higher energy level achieved by the current conditioning process In this article, the current conditioning was carried out in various conditions and its validity was examined. The current conditioning was processed by changing the amplitude of applied current, arc time, the number of tests, and frequency. The insulation performance and the status of contact surface were checked as well. We concluded that as the applied charge quantity and the conditioning coverage area increase, the conditioning effect is much higher.

A Simplified Unified Model for Predicting the Dielectrophoretic Aactivity of Magnetic Nanoparticles Aimed at Enhancing the Dielectric Characteristics of Transformer Oil

  • Lee, Jong-Cheol;Jeon, Hong-Pil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.431.2-431.2
    • /
    • 2014
  • The dielectric breakdown voltage (DBV) is a measure of an insulating fluids ability to withstand a high electric field stress without breaking down. Conventionally, the presence of water or particulate matter in a dielectric fluid comprises the liquid's breakdown strength. However, the addition of magnetic nanoparticles (MNPs) in the base oil can increase the dielectric breakdown voltage of the fluid reversely, if the condition of the added particles in the fluid is in balance with that of keeping down the initiation and propagation of electrical streamers. In this study, we developed a mathematical model by a set of coupled, nonlinear equations using the COMSOL multiphysics finite element simulation suite and calculated the dielectrophoretic activity of magnetic nanoparticles suspended in the presence of electric field, which is the behavior responsible for enhancing the dielectric characteristics of transformer oil, in order to examine how the activity differ in a transformer oil-based magnetic fluid.

  • PDF

Dielectric Breakdown Characteristics of Epoxy Composites due to Voltage Wave Pattern (전압파형에 따른 에폭시 복합재료의 절연파괴특성)

  • Kim, M.H.;Park, C.O.;Lee, Y.S.;Lee, D.J.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1767-1769
    • /
    • 1997
  • In this paper, interpenetrating polymer network method was introduced in order to improve withstand voltage properties of epoxy resin. The single network structure specimen(E series), simultaneous interpenetrating polymer network specimen(EM series) and pseudo interpenetrating polymer network(EMP series) specimen were manufactured. In order to investigate influence upon electrical properties, dc, ac, and impulse voltage dielectric strength were measured. As a result, it was confirmed that electrical properties of epoxy composites can be superior as IPN introduced to it bring about firm and high density of inner structure.

  • PDF