• Title/Summary/Keyword: wireless-sensor

Search Result 4,215, Processing Time 0.033 seconds

A DEVELOPMENT OF RFID/USN-BASED INTELLIGENT EQUIPMENT FOR CONSTRUCTION SUPPLY CHAIN MANAGEMENT

  • Tae-Hong Shin;Su-Won Yoon;Sangyoon Chin;Soon-Wook Kwon;Yea-Sang Kim;Cheolho Choi
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.472-478
    • /
    • 2009
  • The scopes of the supply chain management in construction projects has expanded from the field management focusing on field storage, transportation, and lifting to the whole supply chain from the materials to field. The expansion of the supply chain management can raise the possibilities of leaner production, which enables shortened lead time of the difficult-to-operate materials, and prevents the work interference or delay. However, the expanded management range requires more information and management than an existing management style currently used for factory production of iron frame, curtain wall, PC, etc. In addition, there are limitations that expand the existing management style into the new supply chain management in construction projects and therefore it is required to automate the existing management style in order to extend the management range. The objective of this study is to propose the process and equipment that can manage the supply chain of the materials which range from the factory production to the field storage based on RFID/USN techniques, introducing small-sized transportation equipment(intelligent pallet), the vehicle tool kit(intelligent trailer), and in-and-out management equipment(Gate Sensor) as a prototype to effectively develop the appliances for operating the proposed process, and present the application possibility of the appliances. The full paper will present then the test results that the proposed appliances for the supply chain management automatically transmit and receive the generated information between the appliances or the appliance and sever under various wireless network circumstances such as zigbee, wibro, Wi-Fi, and CDMA.

  • PDF

A Life time improvement Method of SVM application LEACH protocol in Wireless Sensor Networks (SVM을 적용한 LEACH 프로토콜 기반 무선센서네트워크의 수명 개선 방법)

  • Pyo, Se Jun;Jo, Yong-Ok;Ok, Tae-Seong;Bang, Jong-Dae;Keshav, Tushar;Lee, Seong-Ho;Ryu, Hui-Eun;Lee, Yeonwoo;Bae, Jinsoo;Lee, Seong-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.606-608
    • /
    • 2011
  • 무선 센서 네트워크는 특정지역에 센서 노드를 설치하여 주변 정보 또는 특정 목적의 데이터를 수집하고, 그 정보를 수집하는 싱크(Sink)로 구성되어 있다. 무선 센서 네트워크의 수명은 망을 구성하는 센서 노드의 베터리 소비에 따라 수명이 결정 되고 하나의 노드가 죽기 시작하면서부터 급격하게 센서 노드의 베터리 소비가 커져 빠르게 죽는다. 무선 센서 네트워크를 구성하는 센서노드는 라우팅, 센싱을 수행하기 때문에 베터리 소비에 많은 부담을 가지고 있다. 본 논문은 무선 센서 네트워크의 대표적 클러스터링 기반 라우팅 기법인 LEACH(Low - Energy Adaptive Clustering Hierarchy)프로토콜에 SVM(Support Vector Machine)을 적용하여 센서노드의 균형적인 베터리 소비로 망을 효율적으로 관리하고 망의 수명을 개선 할 수 있는 방법을 제안 한다. 이러한 센서 노드의 균형적인 베터리 소비로 무선센서 네트워크의 수명을 개선 한다. 실험결과 기존의 LEACH 프로토콜보다 우수한 성능을 보인다.

A Secure 6LoWPAN Re-transmission Mechanism for Packet Fragmentation against Replay Attacks (안전한 6LoWPAN 단편화 패킷 재전송 기법에 관한 연구)

  • Kim, Hyun-Gon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.101-110
    • /
    • 2009
  • The 6LoWPAN(IPv6 Low-power Wireless Personal Area Network) performs IPv6 header compression, TCP/UDP/IGMP header compression, packet fragmentation and re-assemble to transmit IPv6 packet over IEEE 802,15.4 MAC/PHY. However, from the point of view of security. It has the existing security threats issued by IP packet fragmenting and reassembling, and new security threats issued by 6LoWPAN packet fragmenting and reassembling would be introduced additionally. If fragmented packets are retransmitted by replay attacks frequently, sensor nodes will be confronted with the communication disruption. This paper analysis security threats introduced by 6LoWPAN fragmenting and reassembling, and proposes a re-transmission mechanism that could minimize re-transmission to be issued by replay attacks. Re-transmission procedure and fragmented packet structure based on the 6LoWPAN standard(RFC4944) are designed. We estimate also re-transmission delay of the proposed mechanism. The mechanism utilizes timestamp, nonce, and checksum to protect replay attacks. It could minimize reassemble buffer overflow, waste of computing resource, node rebooting etc., by removing packet fragmentation and reassemble unnecessary.

Determination and evaluation of dynamic properties for structures using UAV-based video and computer vision system

  • Rithy Prak;Ji Ho Park;Sanggi Jeong;Arum Jang;Min Jae Park;Thomas H.-K. Kang;Young K. Ju
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.457-468
    • /
    • 2023
  • Buildings, bridges, and dams are examples of civil infrastructure that play an important role in public life. These structures are prone to structural variations over time as a result of external forces that might disrupt the operation of the structures, cause structural integrity issues, and raise safety concerns for the occupants. Therefore, monitoring the state of a structure, also known as structural health monitoring (SHM), is essential. Owing to the emergence of the fourth industrial revolution, next-generation sensors, such as wireless sensors, UAVs, and video cameras, have recently been utilized to improve the quality and efficiency of building forensics. This study presents a method that uses a target-based system to estimate the dynamic displacement and its corresponding dynamic properties of structures using UAV-based video. A laboratory experiment was performed to verify the tracking technique using a shaking table to excite an SDOF specimen and comparing the results between a laser distance sensor, accelerometer, and fixed camera. Then a field test was conducted to validate the proposed framework. One target marker is placed on the specimen, and another marker is attached to the ground, which serves as a stationary reference to account for the undesired UAV movement. The results from the UAV and stationary camera displayed a root mean square (RMS) error of 2.02% for the displacement, and after post-processing the displacement data using an OMA method, the identified natural frequency and damping ratio showed significant accuracy and similarities. The findings illustrate the capabilities and reliabilities of the methodology using UAV to evaluate the dynamic properties of structures.

Multi-Line Data Gathering Scheme for Efficient Operation of a Mobile Sink in Solar-Powered Wireless Sensor Networks (태양 에너지 수집형 무선 센서 네트워크에서 모바일 싱크의 효율적 운용을 위한 멀티라인 데이터 수집 기법)

  • Lee, Seungwoo;Kang, Minjae;Son, Youngjae;Gil, Gun Wook;Cheong, Seok Hyun;Bae, Ha Neul;Noh, Dong Kun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.135-138
    • /
    • 2020
  • 무선 센서 네트워크에서 모바일 싱크의 도입은 기존의 고정된 위치의 싱크를 사용하는 WSN에서 발생하는, 싱크 주변 노드들과 외곽 노드들 간의 에너지 불균형 문제(에너지 핫스팟 문제)를 어느 정도 해결할 수 있게 하였다. 그러나 모바일 싱크의 에너지 제약으로 인해 싱크가 모든 노드를 방문하여 데이터를 수집할 수 없기 때문에, 앵커(또는 헤드)라고 불리는 특정 노드에서 데이터를 모으고, 모바일 싱크는 이러한 앵커 노드들만을 방문하는 방법이 널리 사용되고 있다. 최근 연구에서는 모바일 싱크가 보다 효율적으로 에너지 불균형 문제를 해결하기 위하여 모바일 싱크 이동 경로 및 앵커 노드 선정 최적화 방법이 활발히 연구되고 있다. 본 연구에서는 태양 에너지 기반 센서 네트워크를 위한 영역 기반 앵커 선정 기법 및 모바일 싱크 이동 경로 선택 기법을 제안한다. 제안 기법은 각 노드가 수집하는 태양 에너지의 활용을 최대화하고, 에너지 핫스팟 문제를 완화하기 위해 두 개의 라인(영역)을 설정하고 이 라인을 따라 앵커 노드가 선정된다. 모바일 싱크는 데이터 수집을 위해 이 두 라인을 왕복 이동 경로로 택하여 라인 내의 앵커 노드를 방문한다. 실험을 통해 제안 기법이 기존 기법보다 에너지 불균형 문제가 완화되어 노드의 정전 시간이 줄어들고, 이에 따라 모바일 싱크에서 수집되는 데이터의 양이 증가하는 것을 확인하였다.

  • PDF

Analyses of Security Issues and Requirements Under Surroundings of Internet of Things (사물인터넷 환경하에서 보안 이슈 및 요구사항 분석)

  • Jung Tae Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.639-647
    • /
    • 2023
  • A variety of communications are developed and advanced by integration of wireless and wire connections with heterogeneous system. Traditional technologies are mainly focus on information technology based on computer techniques in the field of industry, manufacture and automation fields. As new technologies are developed and enhanced with traditional techniques, a lot of new applications are emerged and merged with existing mechanism and skills. The representative applications are IoT(Internet of Things) services and applications. IoT is breakthrough technologies and one of the innovation industries which are called 4 generation industry revolution. Due to limited resources in IoT such as small memory, low power and computing power, IoT devices are vulnerable and disclosed with security problems. In this paper, we reviewed and analyzed security challenges, threats and requirements under IoT service.

Efforts against Cybersecurity Attack of Space Systems

  • Jin-Keun Hong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.437-445
    • /
    • 2023
  • A space system refers to a network of sensors, ground systems, and space-craft operating in space. The security of space systems relies on information systems and networks that support the design, launch, and operation of space missions. Characteristics of space operations, including command and control (C2) between space-craft (including satellites) and ground communication, also depend on wireless frequency and communication channels. Attackers can potentially engage in malicious activities such as destruction, disruption, and degradation of systems, networks, communication channels, and space operations. These malicious cyber activities include sensor spoofing, system damage, denial of service attacks, jamming of unauthorized commands, and injection of malicious code. Such activities ultimately lead to a decrease in the lifespan and functionality of space systems, and may result in damage to space-craft and, lead to loss of control. The Cybersecurity Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) matrix, proposed by Massachusetts Institute of Technology Research and Engineering (MITRE), consists of the following stages: Reconnaissance, Resource Development, Initial Access, Execution, Persistence, Privilege Escalation, Defense Evasion, Credential Access, Discovery, Lateral Movement, Collection, Command & Control, Exfiltration, and Impact. This paper identifies cybersecurity activities in space systems and satellite navigation systems through the National Institute of Standards and Technology (NIST)'s standard documents, former U.S. President Trump's executive orders, and presents risk management activities. This paper also explores cybersecurity's tactics attack techniques within the context of space systems (space-craft) by referencing the Sparta ATT&CK Matrix. In this paper, security threats in space systems analyzed, focusing on the cybersecurity attack tactics, techniques, and countermeasures of space-craft presented by Space Attack Research and Tactic Analysis (SPARTA). Through this study, cybersecurity attack tactics, techniques, and countermeasures existing in space-craft are identified, and an understanding of the direction of application in the design and implementation of safe small satellites is provided.

Edge Computing Model based on Federated Learning for COVID-19 Clinical Outcome Prediction in the 5G Era

  • Ruochen Huang;Zhiyuan Wei;Wei Feng;Yong Li;Changwei Zhang;Chen Qiu;Mingkai Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.826-842
    • /
    • 2024
  • As 5G and AI continue to develop, there has been a significant surge in the healthcare industry. The COVID-19 pandemic has posed immense challenges to the global health system. This study proposes an FL-supported edge computing model based on federated learning (FL) for predicting clinical outcomes of COVID-19 patients during hospitalization. The model aims to address the challenges posed by the pandemic, such as the need for sophisticated predictive models, privacy concerns, and the non-IID nature of COVID-19 data. The model utilizes the FATE framework, known for its privacy-preserving technologies, to enhance predictive precision while ensuring data privacy and effectively managing data heterogeneity. The model's ability to generalize across diverse datasets and its adaptability in real-world clinical settings are highlighted by the use of SHAP values, which streamline the training process by identifying influential features, thus reducing computational overhead without compromising predictive precision. The study demonstrates that the proposed model achieves comparable precision to specific machine learning models when dataset sizes are identical and surpasses traditional models when larger training data volumes are employed. The model's performance is further improved when trained on datasets from diverse nodes, leading to superior generalization and overall performance, especially in scenarios with insufficient node features. The integration of FL with edge computing contributes significantly to the reliable prediction of COVID-19 patient outcomes with greater privacy. The research contributes to healthcare technology by providing a practical solution for early intervention and personalized treatment plans, leading to improved patient outcomes and efficient resource allocation during public health crises.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Performance Analysis of Implementation on IoT based Smart Wearable Mine Detection Device

  • Kim, Chi-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.51-57
    • /
    • 2019
  • In this paper, we analyzed the performance of IoT based smart wearable mine detection device. There are various mine detection methods currently used by the military. Still, in the general field, mine detection is performed by visual detection, probe detection, detector detection, and other detection methods. The detection method by the detector is using a GPR sensor on the detector, which is possible to detect metals, but it is difficult to identify non-metals. It is hard to distinguish whether the area where the detection was performed or not. Also, there is a problem that a lot of human resources and time are wasted, and if the user does not move the sensor at a constant speed or moves too fast, it is difficult to detect landmines accurately. Therefore, we studied the smart wearable mine detection device composed of human body antenna, main microprocessor, smart glasses, body-mounted LCD monitor, wireless data transmission, belt type power supply, black box camera, which is to improve the problem of the error of mine detection using unidirectional ultrasonic sensing signal. Based on the results of this study, we will conduct an experiment to confirm the possibility of detecting underground mines based on the Internet of Things (IoT). This paper consists of an introduction, experimental environment composition, simulation analysis, and conclusion. Introduction introduces the research contents such as mines, mine detectors, and research progress. It consists of large anti-personnel mine, M16A1 fragmented anti-mine, M15 and M19 antitank mines, plastic bottles similar to mines and aluminum cans. Simulation analysis is conducted by using MATLAB to analyze the mine detection device implementation performance, generating and transmitting IoT signals, and analyzing each received signal to verify the detection performance of landmines. Then we will measure the performance through the simulation of IoT-based mine detection algorithm so that we will prove the possibility of IoT-based detection landmine.