• Title/Summary/Keyword: wireless embedded sensor

Search Result 212, Processing Time 0.025 seconds

Location Estimation and Navigation of Mobile Robots using Wireless Sensor Network and Ultrasonic Sensors (무선 센서 네트워크와 초음파 센서를 이용한 이동로봇의 위치 인식과 주행)

  • Chun, Chang-Hee;Park, Jong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1692-1698
    • /
    • 2010
  • In this paper we use wireless sensor network and ultrasonic sensors to estimate local position of mobile robots, and to navigate it. Ultra sonic sensor is simple and accurate so it is good to use in local estimation and navigation of mobile robots. But to obtain accurate distance of two sensors they need to face each others as possible as they can. To solve this problem we rotate ultra sonic sensor which is attached to robot in 360 degrees and obtain accurate distance. We can estimate precise position of mobile robot by triangulation using obtained distance information. A mobile robot navigates using embedded encoder and compensates its coordinates by ultrasonic sensors. Results of Experiments show proposed method obtains accurate distance between sensors and coordinates of position of robot. And mobile robots can navigate designated path well.

Adaptive Wireless Sensor Network Technology for Ubiquitous Container Logistics Development

  • Chai, Bee-Lie;Yeoh, Chee-Min;Kwon, Tae-Hong;Lee, Ki-Won;Lim, Hyotaek;Kwark, Gwang-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.317-320
    • /
    • 2009
  • At the present day, the use of containers crisscrossing seven seas and intercontinental transport has significantly increased and bringing the change on the shape of the world economy which we cannot be neglected. Additionally, with the recent technological advances in wireless sensor network (WSN) technologies, has providing an economically feasible monitoring solution to diverse application that allow us to envision the intelligent containers represent the next evolutionary development step in order to increase the efficiency, productivity, utilities, security and safe of containerized cargo shipping. This paper we present a comprehensive containerized cargo monitoring system which has adaptively embedded WSN technology into cargo logistic technology. We share the basic requirement for an autonomous logistic network that could provide optimum performance and a suite of algorithms for self-organization and bi-directional communication of a scalable large number of sensor node apply on container regardless inland and maritime transportation.

  • PDF

Implementation of smart security CCTV system based on wireless sensor networks and GPS data (무선 센서 네트워크와 GPS정보를 이용한 스마트 보안 CCTV 시스템 구현)

  • Yoon, Kyung-Hyo;Park, Jin-Hong;Kim, Jungjoon;Seo, Dae-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.918-931
    • /
    • 2013
  • The conventional object tracking techniques using PTZ camera detects object movements by analyzing acquired image. However, this technique requires expensive hardware devices to perform a complex image processing. And it is occasionally hard to detect object movements, if an acquired image is low quality or image acquisition is impossible. In this paper, we proposes a smart security CCTV system applying to wireless sensor network technique based on IEEE 802.15.4 standard to overcome the problems of conventional object tracking technique, which enables to track suspicious objects by detecting object movements and GPS data in sensor node. This system enables an efficient control of PTZ camera to observe a wide area, decreasing image processing complexity. Also, wireless sensor network is implemented using mesh networks to increase the efficiency of installing sensor node.

Design of Low Power Processor based Sensor Node Hardware for Applications of Hydroponics (수경재배 적용을 위한 저전력 프로세서 기반의 센서노드 하드웨어 설계)

  • Kang, Mun-Ho;Kim, Tea-Hwa;Choi, Byung-Jae;Kim, Hie-Cheol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.1
    • /
    • pp.34-41
    • /
    • 2008
  • There are many researches to build up ubiquitous environment by the Ubiquitous Sensor Network(USN). These applications, such as home network, health care, natural environment and agricultural areas, are implemented by an embedded system. Their fields are gradually spreading. However the power consumption in its implementation plays an important role on the surrounding environment of the wireless network. In this paper, we design low power processor based sensor node platform for agricultural applications. We also compare its some performance with existing products.

  • PDF

Kalman Filter-based Data Recovery in Wireless Smart Sensor Network for Infrastructure Monitoring (구조물 모니터링을 위한 무선 스마트 센서 네트워크의 칼만 필터 기반 데이터 복구)

  • Kim, Eun-Jin;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.42-48
    • /
    • 2016
  • Extensive research effort has been made during the last decade to utilize wireless smart sensors for evaluating and monitoring structural integrity of civil engineering structures. The wireless smart sensor commonly has sensing and embedded computation capabilities as well as wireless communication that provide strong potential to overcome shortcomings of traditional wired sensor systems such as high equipment and installation cost. However, sensor malfunctioning particularly in case of long-term monitoring and unreliable wireless communication in harsh environment are the critical issues that should be properly tackled for a wider adoption of wireless smart sensors in practice. This study presents a wireless smart sensor network(WSSN) that can estimate unmeasured responses for the purpose of data recovery at unresponsive sensor nodes. A software program that runs on WSSN is developed to estimate the unmeasured responses from the measured using the Kalman filter. The performance of the developed network software is experimentally verified by estimating unmeasured acceleration responses using a simply-supported beam.

A Study on the Development of Zigbee Wireless Image Transmission and Monitoring System (지그비 무선 이미지 전송 및 모니터링 시스템 개발에 대한 연구)

  • Roh, Jae-sung;Kim, Sang-il;Oh, Kyu-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.631-634
    • /
    • 2009
  • Recent advances in wireless communication, electronics, MEMS device, sensor and battery technology have made it possible to manufacture low-cost, low-power, multi-function tiny sensor nodes. A large number of tiny sensor nodes form sensor network through wireless communication. Sensor networks represent a significant improvement over traditional sensors, research on Zigbee wireless image transmission has been a topic in industrial and scientific fields. In this paper, we design a Zigbee wireless image sensor node and multimedia monitoring server system. It consists of embedded processor, memory, CMOS image sensor, image acquisition and processing unit, Zigbee RF module, power supply unit and remote monitoring server system. In the future, we will further improve our Zigbee wireless image sensor node and monitoring server system. Besides, energy-efficient Zigbee wireless image transmission protocol and interworking with mobile network will be our work focus.

  • PDF

Smart Sensor for Machine Condition Monitoring Using Wireless LAN (무선 랜 통신을 이용한 기계 상태감시용 스마트 센서)

  • Tae, Sung-Do;Son, Jong-Duk;Yang, Bo-Suk;Kim, Dong-Hyen
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.523-529
    • /
    • 2009
  • Smart sensor is known as intelligent sensor, it is different with other conventional sensors in the case of intelligent system embedded on it. Smart sensor has many benefits e.g. low-cost in usage, self-decision and self-diagnosis abilities. This sensor consists of perception element(sensing element), signal processing and technology of communication. In this work, a bridge and structure of smart sensor has been investigated to be capable to condition monitoring routine. This investigation involves low power consumption, software programming, fast data acquisition ability, and authoritativeness warranty. Moreover, this work also develops smart sensor to be capable to perform high sampling rate, high resolution of ADC, high memory capacity, and good communication for data transfer. The result shows that the developed smart sensor is promising to be applied to various industrial fields.

Energy-Aware Data Compression and Transmission Range Control Scheme for Energy-Harvesting Wireless Sensor Networks (에너지 수집형 무선 센서 네트워크를 위한 에너지 적응형 데이터 압축 및 전송 범위 결정 기법)

  • Yi, Jun Min;Oh, Eomji;Noh, Dong Kun;Yoon, Ikjune
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.243-249
    • /
    • 2016
  • Energy-harvesting nodes in wireless sensor networks(WSNs) can be exhausted due to a heavy workload even though they can harvest energy from their environment. On contrast, they can sometimes fully charged, thus waste the harvested energy due to the limited battery-capacity. In order to utilize the harvested energy efficiently, we introduce a selective data compression and transmission range control scheme for energy-harvesting nodes. In this scheme, if the residual energy of a node is expected to run over the battery capacity, the node spends the surplus energy to exploit the data compression or the transmission range expansion; these operations can reduce the burden of intermediate nodes at the expanse of its own energy. Otherwise, the node performs only basic operations such as sensing or transmitting so as to avoid its blackout time. Simulation result verifies that the proposed scheme gathers more data with fewer number of blackout nodes than other schemes by consuming energy efficiently.

A Study on Applicability of Wireless Impedance Sensor Nodes Technique for Tensile Force Monitoring of Structural Cables (구조용 케이블의 인장력 모니터링을 위한 무선 임피던스 센서노드 기술의 적용성에 관한 연구)

  • Park, Jae-Hyung;Hong, Dong-Soo;Kim, Jeong-Tae;Na, Won-Bae;Cho, Hyun-Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.21-31
    • /
    • 2010
  • In this study, a technique that uses wireless impedance sensor nodes is proposed to monitor tensile force of structural cable. To achieve this goal, the following approaches were implemented. First, a wireless impedance sensor node was designed for automated and cost-efficient prestress-loss monitoring. Second, an impedance-based algorithm was embedded in the wireless impedance sensor node for autonomous structural health monitoring of structural cables. Third, a tensile force monitoring technique that uses an interface plate for structural cables was proposed to overcome the limitations of the wireless impedance sensor node such as its narrow-band measurable frequency ranges. Finally, the applicability of the wireless impedance sensor node and the technique that uses the interface washer were evaluated in a lab-scaled prestressed concrete (PSC) girder model with internal and external tendons for which several prestress-loss scenarios were experimentally monitored with the wireless impedance sensor nodes.

Vehicle Speed Measurement System based on Wireless Sensor Network (무선 센서네트워크 기반 차량속도 측정 시스템)

  • Yoo, Seongeun;Kim, Taehong;Park, Taisoo;Kim, Daeyoung;Shin, Changsub;Sung, Kyungbok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.1
    • /
    • pp.42-48
    • /
    • 2008
  • The architecture of WSN based Vehicle Speed Measurement System is presented in this paper from Telematics Sensor Network(TSN) to Management System. To verify the feasibility of the system, we implemented the vehicle speed measurement system and evaluated the accuracy of velocity measured by the system in our testbed, an old highway located near Kyungbu highway. The system performed over 95% of accuracy at 80kmph from the measurement. In addition, the battery life time of the sensor node was evaluated by simulation analysis with real measured current consumption profiles. Assuming the maximum average daily traffic in 2005, the battery life time is expected to be over 1.6 year from the simulation result.

  • PDF