• Title/Summary/Keyword: wireless data

Search Result 5,119, Processing Time 0.03 seconds

Wavelet Based Compression Technique for Efficient Image Transmission in the Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크에서 효율적인 이미지 전송을 위한 웨이블릿 기반 압축 기법)

  • Kwon, Young-Wan;Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2323-2329
    • /
    • 2008
  • Advances in wireless communication and hardware technology have made it possible to manufacture high-performance tiny sensor nodes. More recently, the availability of inexpensive cameras modules that are able to capture multimedia data from the environment has fostered the development of Wireless Multimedia Sensor Networks(WMSNs). WMSN supplements the a advanced technique that senses, transmits, and processes the multimedia contents upon the text based traditional wireless sensor network. Since the amount of data which the multimedia contents have, is significantly larger than that of text based data, multimedia contents require lots of computing power and high network bandwidth. To process the multimedia contents on the wireless sensor node which has very limited computing power and energy, a technique for WMSN should take account of computing resource and efficient transmission. In the paper, we propose a new image compression technique YWCE for efficient compression and transmission of image data in WMSN. YWCE introduces 4 type of technique for motion estimation and compensation based on the Resolution Scalability of Wavelet. Experimental result shows that YWCE has high compression performance with different set of 4 type.

Data Compression Method for Reducing Sensor Data Loss and Error in Wireless Sensor Networks (무선센서네트워크에서 센서 데이터 손실과 오류 감소를 위한 데이터 압축 방법)

  • Shin, DongHyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.360-374
    • /
    • 2016
  • Since WSNs (Wireless Sensor Networks) applied to their application areas such as smart home, smart factory, environment monitoring, etc., depend on sensor data, the sensor data is the most important among WSN components. The resources of each node consisting of WSN are extremely limited in energy, hardware and so on. Due to these limitation, communication failure probabilities become much higher and the communication failure causes data loss to occur. For this reason, this paper proposes 2MC (Maximum/Minimum Compression) that is a method to compress sensor data by selecting circular queue-based maximum/minimum sensor data values. Our proposed method reduces sensor data losses and value errors when they are recovered. Experimental results of 2MC method show the maximum/minimum 35% reduction efficiency in average sensor data accumulation error rate after the 3 times compression, comparing with CQP (Circular Queue Compression based on Period) after the compressed data recovering.

Data Alignment for Data Fusion in Wireless Multimedia Sensor Networks Based on M2M

  • Cruz, Jose Roberto Perez;Hernandez, Saul E. Pomares;Cote, Enrique Munoz De
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.229-240
    • /
    • 2012
  • Advances in MEMS and CMOS technologies have motivated the development of low cost/power sensors and wireless multimedia sensor networks (WMSN). The WMSNs were created to ubiquitously harvest multimedia content. Such networks have allowed researchers and engineers to glimpse at new Machine-to-Machine (M2M) Systems, such as remote monitoring of biosignals for telemedicine networks. These systems require the acquisition of a large number of data streams that are simultaneously generated by multiple distributed devices. This paradigm of data generation and transmission is known as event-streaming. In order to be useful to the application, the collected data requires a preprocessing called data fusion, which entails the temporal alignment task of multimedia data. A practical way to perform this task is in a centralized manner, assuming that the network nodes only function as collector entities. However, by following this scheme, a considerable amount of redundant information is transmitted to the central entity. To decrease such redundancy, data fusion must be performed in a collaborative way. In this paper, we propose a collaborative data alignment approach for event-streaming. Our approach identifies temporal relationships by translating temporal dependencies based on a timeline to causal dependencies of the media involved.

Quality of Service using Min-Max Data Size Scheduling in Wireless Sensor Networks

  • Revathi, A.;Santhi, S.G.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.327-333
    • /
    • 2022
  • Wireless Sensor Networks (WSNs) plays an important role in our everyday life. WSN is distributed in all the places. Nowadays WSN devices are developing our world as smart and easy to access and user-friendly. The sensor is connected to all the resources based on the uses of devices and the environment [1]. In WSN, Quality of Service is based on time synchronization and scheduling. Scheduling is important in WSN. The schedule is based on time synchronization. Min-Max data size scheduling is used in this proposed work. It is used to reduce the Delay & Energy. In this proposed work, Two-hop neighboring node is used to reduce energy consumption. Data Scheduling is used to identify the shortest path and transmit the data based on weightage. The data size is identified by three size of measurement Min, Max and Medium. The data transmission is based on time, energy, delivery, etc., the data are sent through the first level shortest path, then the data size medium, the second level shortest path is used to send the data, then the data size is small, it should be sent through the third level shortest path.

An efficient dual layer data aggregation scheme in clustered wireless sensor networks

  • Fenting Yang;Zhen Xu;Lei Yang
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.604-618
    • /
    • 2024
  • In wireless sensor network (WSN) monitoring systems, redundant data from sluggish environmental changes and overlapping sensing ranges can increase the volume of data sent by nodes, degrade the efficiency of information collection, and lead to the death of sensor nodes. To reduce the energy consumption of sensor nodes and prolong the life of WSNs, this study proposes a dual layer intracluster data fusion scheme based on ring buffer. To reduce redundant data and temporary anomalous data while guaranteeing the temporal coherence of data, the source nodes employ a binarized similarity function and sliding quartile detection based on the ring buffer. Based on the improved support degree function of weighted Pearson distance, the cluster head node performs a weighted fusion on the data received from the source nodes. Experimental results reveal that the scheme proposed in this study has clear advantages in three aspects: the number of remaining nodes, residual energy, and the number of packets transmitted. The data fusion of the proposed scheme is confined to the data fusion of the same attribute environment parameters.

Design and Implementation of Integrated IEEE802.15.4 Wireless Mobile Care Application (집적형 IEEE 802.15.4 무선 모바일케어 응용시스템의 설계 및 적용)

  • Yau, Chiew-Lian;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.482-485
    • /
    • 2007
  • Recent generation of wireless computing has focus on the integrating of exisitng technologies to enhance the mobile capabilities and developing a new approaches to meet the needs of the growing pool of applications. This paper describes an integrated IEEE802.15.4 wireless CDMA based healthcare system that interacts and received the data wirelessly from wireless medical devices of patient and forward to medical center by using the cellular network. Mobile application had been developed not only as the middle ware to handle the receive and transmit of medical data between wireless sensor network and cellular network but also provides the interface for monitoring and analyzing the health condition of patients continuously at cellular phone regardless of its physical location. This system thus enables the remote healthcare monitoring and supports medical data seamlessly roams between IEEE802.15.4 wireless network and CDMA network beyond and outside the hospital environment.

  • PDF

Design and Evaluation of Wireless Sensor Node Application for u-Healthcare (u-헬스케어를 위한 무선센서노드 어플리케이션 구현 및 성능 평가)

  • Lee, Dae-Seok;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.518-521
    • /
    • 2007
  • The functional wireless sensor node for u-healthcare application was developed. The developed sensor node can check the abnormality of ECG in some simple software in ROM of microprocess in the sensor node. The ECG signal is one of very important health signal form human body, and wavelike signal which is sampled as a sampling frequency between 100 and 400 Hz for digitalization, so the wireless data dor ECG signal is some heavy in Zigbee communication. Thus the sensor send the ECG signal to other sensor nodes or base station when it find abnormality in ECG signal is key technology to reduce the traffic between sensor nodes in wireless sensor network for u-healthcare, The sensor node does not need to transmit ECG data all time in wireless sensor network and to server. Using these sensor nodes, the healthcare system can dramatically reduce wireless data packet overload, the power consumption of battery in the sensor nodes and thus increase the reliability of the wireless system.

  • PDF

Study of Information Maintenance Components in Wireless Network Environment based on Sensors (센서기반 무선 네트워크 환경에서 정보 유지관리에 관한 구성요소 연구)

  • Lee, Hyun-Chang;Xu, Chen-Lin;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2640-2644
    • /
    • 2014
  • With the development of technology, wireless sensor networks (WSN) are wireless networks of consisting a large number of small and low-cost sensors. Wireless sensor networks facilitate collaboration to achieve the perception of information collection, processing and transmission tasks in deployment area. They have various purposes such as military, disaster relief, medical rescue, environmental monitoring, precision farming and manufacturing industry etc. Therefore, technologies for data maintaining technologies in sensor network environment is one of essential parts of sensor networks. In this paper, we present the essential particulars about data management technology at wireless sensor network environments and propound the issues. Further, we could organize and develop a systematic approach in solving the issues.

Power and Location Information based Routing Protocol Design in Wireless Sensor Networks (무선 센서 네트워크에서 전력과 위치정보 기반 라우팅 프로토콜 디자인)

  • Son Byung-Rak;Kim Jung-Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.2
    • /
    • pp.48-62
    • /
    • 2006
  • In recent years, wireless sensor networks(WSNs) have emerged as a new fast-growing application domain for wireless distributed computing and embedded systems. Recent Progress in computer and communication technology has made it possible to organize wireless sensor networks composed tiny sensor nodes. Furthermore, ad-hoc network protocols do not consider the characteristics of wireless sensor nodes, making existing ad-hoc network protocols unsuitable for the wireless sensor networks. First, we propose power-aware routing protocols based on energy-centered routing metrics. Second, we describe power management techniques for wireless sensor nodes using the spatial locality of sensed data. Many nodes can go into a power-down mode without sacrificing the accuracy of sensed data. Finally, combining the proposed techniques, we describe an overall energy-efficient protocol for data collection. Experimental results show that the proposed routing protocol can extend the routing path lifetime more than twice. The average energy consumption per sensing period is reduced by up to 30%.

  • PDF