• Title/Summary/Keyword: wireless control network

Search Result 1,580, Processing Time 0.029 seconds

Transmission Power Control algorithm based link quality indicator at IEEE 802.15.4 wireless personal area network (IEEE 802.15.4 무선 PAN에서 링크 품질에 기반을 둔 Transmission Power Control 알고리즘)

  • Seo, Jung-Tae;Kim, Kwang-Jin;Son, Byung-Hee;Kwon, Young-Bin;Park, Jae-Hwa;Park, Ho-Hyun;Lee, Jung-Woo;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.3-6
    • /
    • 2009
  • IEEE 802.15.4 기반의 무선 PAN(WPAN: Wireless Personal Area Network)환경에서 기존에 제안된 전송 전력 제어(TPC: Transmission Power Control) 알고리즘은 수신 신호의 세기를 기반으로 반복 전송을 통하여 적합한 최소 전송 전력을 결정하는 방법으로 진행되어 왔다. 이러한 방법은 통신 채널의 변화가 잦은 지역에서는 재전송률이 높아지고 전송 품질이 떨어지는 단점을 가지고 있다. 따라서 본 논문에서는 IEEE 80215.4에서 제공하는 링크 품질 지표(LQI: Link quality indicator)값을 바탕으로 최소 전송 전력을 결정하여 재전송률을 줄이고, 통신 채널 변화에 보다 능동적으로 대응할 수 있는 새로운 전송 진력 제어 방법을 제안하고자 한다.

  • PDF

A Semi-Markov Decision Process (SMDP) for Active State Control of A Heterogeneous Network

  • Yang, Janghoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3171-3191
    • /
    • 2016
  • Due to growing demand on wireless data traffic, a large number of different types of base stations (BSs) have been installed. However, space-time dependent wireless data traffic densities can result in a significant number of idle BSs, which implies the waste of power resources. To deal with this problem, we propose an active state control algorithm based on semi-Markov decision process (SMDP) for a heterogeneous network. A MDP in discrete time domain is formulated from continuous domain with some approximation. Suboptimal on-line learning algorithm with a random policy is proposed to solve the problem. We explicitly include coverage constraint so that active cells can provide the same signal to noise ratio (SNR) coverage with a targeted outage rate. Simulation results verify that the proposed algorithm properly controls the active state depending on traffic densities without increasing the number of handovers excessively while providing average user perceived rate (UPR) in a more power efficient way than a conventional algorithm.

An Enhanced TCP Congestion Control using Link-Error Rates at Wireless Edges (무선 에지의 링크 오류율을 이용한 개선된 TCP 혼잡제어)

  • Oh, Jun-Seok;Park, Tan-Se;Park, Chang-Yun;Jung, Choong-Il
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.7
    • /
    • pp.794-798
    • /
    • 2010
  • Assuming that a wireless link is mostly used at the network edge and the wireless NIC driver keeps monitoring the error rate of its link, this paper proposes an enhanced TCP congestion control, TCP-L (TCP Link-Aware). TCP-L predicts true congestion losses occurred inside the wired link area by utilizing the wireless link error rate. As a result, it mitigates performance degradation caused from TCP congestion control actions when segments losses occur in a wireless link. Experimental results show that TCP-L provides better performance and fairness in lossy wireless links than existing TCP congestion control schemes. Our approach utilizing the characteristic of the link at TCP could be well adapted to new wireless environments such as Cognitive Radio and ACK-less IEEE 802.11, where a frame may be delivered with a very long delay or lost in the link.

Remote Measurement of the Automobile′s ECU Signals with KWP2000 using Bluetooth Module (Bluetooth 모듈을 이용한 KWP2000 차량 ECU신호의 원격 계측)

  • Choi Kwang-Hun;Kwon Tae-Kyu;Lee Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.86-93
    • /
    • 2004
  • This paper presents the remote measurement of the ECU signals adopted with KWP 2000 protocol using the wireless communication technique of bluetooth. The bluetooth technology will be the most promising network paradigm which can open the new area in the information technology. Especially, bluetooth module is able to link all the electrical products and personal computers to cellular phone or PDA. This research has a try to design a wireless measurement model of ECU signal based on the car telemery system using bluetooth device. In order to measure the ECU signals, we designed the interface circuits which is able to communicate between the ECU system and the terminal circuits according to the ISO, SAE regulation of communication protocol standard. A microprocessor S3c341 OX is used for the system control and communication of ECU signals. The embedded system software is programmed to measure the ECU signals using the ARM compiler and ANCI C based on Micro/OS-II kernel to communicate between two bluetooth modules using bluetooth stack. The remote measurement of ECU signals using the bluetooth was designed and implemented to evaluate the performance of wireless network to the transmit measurement data. The possibility for the remote measurement of the self diagnosis signals of ECU adopted with KWP2000 protocol verified through the developed systems and algorithms in embedded system.

QoSCM: QoS-aware Coded Multicast Approach for Wireless Networks

  • Mohajer, Amin;Barari, Morteza;Zarrabi, Houman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5191-5211
    • /
    • 2016
  • It is essential to satisfy class-specific QoS constraints to provide broadband services for new generation networks. The present study proposes a QoS-driven multicast scheme for wireless networks in which the transmission rate and end-to-end delay are assumed to be bounded during a multiple multicast session. A distributed algorithm was used to identify a cost-efficient sub-graph between the source and destination which can satisfy QoS constraints of a multicast session. The model was then modified as to be applied for wireless networks in which satisfying interference constraints is the main challenge. A discrete power control scheme was also applied for the QoS-aware multicast model to accommodate the effect of transmission power level based on link capacity requirements. We also proposed random power allocation (RPA) and gradient power allocation (GPA) algorithms to efficient resource distribution each of which has different time complexity and optimality levels. Experimental results confirm that the proposed power allocation techniques decrease the number of unavailable links between intermediate nodes in the sub-graph and considerably increase the chance of finding an optimal solution.

Performance Improvement of WTCP by Differentiated Handling of Congestion and Random Loss (혼잡 및 무선 구간 손실의 차별적 처리를 통한 WTCP 성능 개선)

  • Cho, Nam-Jin;Lee, Sung-Chang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.9
    • /
    • pp.30-38
    • /
    • 2008
  • The traditional TCP was designed assuming wired networks. Thus, if it is used networks consisting of both wired and wireless networks, all packet losses including random losses in wireless links are regarded as network congestion losses. Misclassification of packet losses causes unnecessary reduction of transmission rate, and results in waste of bandwidth. In this paper, we present WTCP(wireless TCP) congestion control algorithm that differentiates the random losses more accurately, and adopts improved congestion control which results in better network throughput. To evaluate the performance of proposed scheme, we compared the proposed algorithm with TCP Westwood and TCP Veno via simulations.

Enhancing the Reliability of Wi-Fi Network Using Evil Twin AP Detection Method Based on Machine Learning

  • Seo, Jeonghoon;Cho, Chaeho;Won, Yoojae
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.541-556
    • /
    • 2020
  • Wireless networks have become integral to society as they provide mobility and scalability advantages. However, their disadvantage is that they cannot control the media, which makes them vulnerable to various types of attacks. One example of such attacks is the evil twin access point (AP) attack, in which an authorized AP is impersonated by mimicking its service set identifier (SSID) and media access control (MAC) address. Evil twin APs are a major source of deception in wireless networks, facilitating message forgery and eavesdropping. Hence, it is necessary to detect them rapidly. To this end, numerous methods using clock skew have been proposed for evil twin AP detection. However, clock skew is difficult to calculate precisely because wireless networks are vulnerable to noise. This paper proposes an evil twin AP detection method that uses a multiple-feature-based machine learning classification algorithm. The features used in the proposed method are clock skew, channel, received signal strength, and duration. The results of experiments conducted indicate that the proposed method has an evil twin AP detection accuracy of 100% using the random forest algorithm.

Delay Time Analysis of Asynchronous CSL Mode MAC in Wi-SUN (Wi-SUN에서 비동기 CSL모드 MAC의 지연시간 분석)

  • Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.23-28
    • /
    • 2021
  • In recent years, research on smart factory wireless mobile communication technology that wirelessly remotely controls utilities is being actively conducted. The Wi-SUN(Wireless Smart Utility Network) Alliance proposed Wi-SUN protocol structure suitable for building a platform such as a smart factory as a new wireless communication standardization standard based on EEE802.15.4g/e. It analyzes the performance of the IEEE802.15.4e CSL(Coordinated Sampled Listening) Mode MAC(Media Access Control) in terms of latency and looks at considerations for efficient operation.

Secure SLA Management Using Smart Contracts for SDN-Enabled WSN

  • Emre Karakoc;Celal Ceken
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3003-3029
    • /
    • 2023
  • The rapid evolution of the IoT has paved the way for new opportunities in smart city domains, including e-health, smart homes, and precision agriculture. However, this proliferation of services demands effective SLAs between customers and service providers, especially for critical services. Difficulties arise in maintaining the integrity of such agreements, especially in vulnerable wireless environments. This study proposes a novel SLA management model that uses an SDN-Enabled WSN consisting of wireless nodes to interact with smart contracts in a straightforward manner. The proposed model ensures the persistence of network metrics and SLA provisions through smart contracts, eliminating the need for intermediaries to audit payment and compensation procedures. The reliability and verifiability of the data prevents doubts from the contracting parties. To meet the high-performance requirements of the blockchain in the proposed model, low-cost algorithms have been developed for implementing blockchain technology in wireless sensor networks with low-energy and low-capacity nodes. Furthermore, a cryptographic signature control code is generated by wireless nodes using the in-memory private key and the dynamic random key from the smart contract at runtime to prevent tampering with data transmitted over the network. This control code enables the verification of end-to-end data signatures. The efficient generation of dynamic keys at runtime is ensured by the flexible and high-performance infrastructure of the SDN architecture.

A Design of Hop-by-Hop based Reliable Congestion Control Protocol for WSNs (무선 센서 네트워크를 위한 Hop-by-Hop 기반의 신뢰성 있는 혼잡제어 기법 설계)

  • Heo Kwan;Kim Hyun-Tae;Ra In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1055-1059
    • /
    • 2006
  • In Wireless Sensor Networks(WSNs), a sensor node broadcasts the acquisited sensing data to neighboring other nodes and it makes serious data duplication problem that increases network traffic loads and data loss. This problem is concerned with the conflict condition for supporting both the reliability of data transfer and avoidance of network congestion. To solve the problem, a reliable congestion control protocol is necessary that considers critical factors affecting on data transfer reliability such as reliable data transmission, wireless loss, and congestion loss for supporting effective congestion control in WSNs. In his paper, we proposes a reliable congestion protocol, called HRCCP, based on hop-hop sequence number, and DSbACK by minimizing useless data transfers as an energy-saved congestion control method.