• Title/Summary/Keyword: wireless control network

Search Result 1,580, Processing Time 0.025 seconds

A Smart Farming System Based on Visible Light Communications (가시광 무선통신 기반의 스마트 농업 시스템)

  • Yeom, Tae-Hwa;Park, Sung-Mi;Kwon, Hye-In;Hwang, Duck-Kyu;Kim, Jeongchang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.479-485
    • /
    • 2013
  • In this paper, we propose a smart farming system using the visible light communication based on the software defined radio (SDR) technology and the conventional RF radio. The proposed system can continuously monitor growth environments of the LED plant factory and automatically control the LED plant factory to keep optimal growth environments. Furthermore, by creating a database from various growth factors, the LED plant factory can be efficiently managed.

Bridge Road Surface Frost Prediction and Monitoring System (교량구간의 결빙 예측 및 감지 시스템)

  • Sin, Geon-Hun;Song, Young-Jun;You, Young-Gap
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.42-48
    • /
    • 2011
  • This paper presents a bridge road surface frost prediction and monitoring system. The node sensing hardware comprises microprocessor, temperature sensors, humidity sensors and Zigbee wireless communication. A software interface is implemented the control center to monitor and acquire the temperature and humidity data of bridge road surface. A bridge road surface frost occurs when the bridge deck temperature drops below the dew point and the freezing point. Measurement data was used for prediction of road surface frost occurrences. The actual alert is performed at least 30 minutes in advance the road surface frost. The road surface frost occurrences data are sent to nearby drivers for traffic accidents prevention purposes.

State of the Art 3GPP M2M Communications toward Smart Grid

  • Kwon, Young-Min;Kim, Jun-Suk;Chung, Min-Young;Choo, Hyun-Seung;Lee, Tae-Jin;Kim, Mi-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.468-479
    • /
    • 2012
  • Recent advances in wireless communications and electronics has enabled the development of machine-to-machine (M2M) communications. This communication paradigm has been expected as an automated control and report solution for smart grid. The smart grid enables customers and operators to utilize the collected usage information from a large number of meters with transceivers for efficiency and safety. In this paper, we introduce architecture, requirements and challenges of M2M communications for smart grid. We extract technical issues that should be resolved in M2M communications to support the smart grid via third-generation partnership project (3GPP) cellular networks. We then present the current state of the art of research results to deal with such issues. Finally, we outline the open research issues.

Maximum Ratio Transmission for Space-Polarization Division Multiple Access in Dual-Polarized MIMO System

  • Hong, Jun-Ki;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3054-3067
    • /
    • 2015
  • The phenomena of higher channel cross polarization discrimination (XPD) is mainly observed for future wireless technologies such as small cell network and massive multiple-input multiple-output (MIMO) system. Therefore, utilization of high XPD is very important and space-polarization division multiple access (SPDMA) with dual-polarized MIMO system could be a suitable solution to high-speed transmission in high XPD environment as well as reduction of array size at base station (BS). By SPDMA with dual-polarized MIMO system, two parallel data signals can be transmitted by both vertically and horizontally polarized antennas to serve different mobile stations (MSs) simultaneously compare to conventional space division multiple access (SDMA) with single-polarized MIMO system. This paper analyzes the performance of SPDMA for maximum ratio transmission (MRT) in time division duplexing (TDD) system by proposed dual-polarized MIMO spatial channel model (SCM) compare to conventional SDMA. Simulation results indicate that how SPDMA utilizes the high XPD as the number of MS increases and SPDMA performs very close to conventional SDMA for same number of antenna elements but half size of the array at BS.

Prediction-Based Reliable Data Forwarding Method in VANET (차량 네트워크에서 예측 기반의 안정적 데이터 포워딩 기법)

  • Kim, Minho;Joo, Changhee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.128-139
    • /
    • 2017
  • Vehicular Ad hoc Network (VANET) is one of technologies to realize various ITS services for safe driving and efficient traffic control. However, data delivery in VANETs is complicated due to high mobility and unreliable wireless transmission. In this paper, we develop a novel forwarding scheme to deliver packets in a reliable and timely manner. The proposed forwarding scheme uses traffic statistics to predict the encounter of two vehicles, and optimize its forwarding decision by taking into consideration the probability of successful transmission between them at the encounter place. We evaluate our scheme through simulations and show that our proposed scheme provides reliable data delivery in VANETs.

Bio-inspired neuro-symbolic approach to diagnostics of structures

  • Shoureshi, Rahmat A.;Schantz, Tracy;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.229-240
    • /
    • 2011
  • Recent developments in Smart Structures with very large scale embedded sensors and actuators have introduced new challenges in terms of data processing and sensor fusion. These smart structures are dynamically classified as a large-scale system with thousands of sensors and actuators that form the musculoskeletal of the structure, analogous to human body. In order to develop structural health monitoring and diagnostics with data provided by thousands of sensors, new sensor informatics has to be developed. The focus of our on-going research is to develop techniques and algorithms that would utilize this musculoskeletal system effectively; thus creating the intelligence for such a large-scale autonomous structure. To achieve this level of intelligence, three major research tasks are being conducted: development of a Bio-Inspired data analysis and information extraction from thousands of sensors; development of an analytical technique for Optimal Sensory System using Structural Observability; and creation of a bio-inspired decision-making and control system. This paper is focused on the results of our effort on the first task, namely development of a Neuro-Morphic Engineering approach, using a neuro-symbolic data manipulation, inspired by the understanding of human information processing architecture, for sensor fusion and structural diagnostics.

A remotely controllable structural health monitoring framework for bridges using 3.5 generation mobile telecommunication technology

  • Koo, Ki-Young;Hong, Jun-Young;Park, Seunghee;Lee, Jong-Jae;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.193-207
    • /
    • 2009
  • A framework for structural health monitoring (SHM) systems is presented utilizing a recent 3.5 generation mobile telecommunication technology, HSDPA (High Speed Downlink Packet Access). It may be effectively applied to monitoring bridges, cut-slopes, and other facilities located in rural areas where the conventional Internet service is not readily available, since HSDPA is currently commercialized in 86 countries to make the Internet access possible in anywhere the mobile phone service is available. The proposed SHM framework is also incorporating remote desktop software to have remote control/operation of the SHM systems. The feasibility of the proposed framework has been demonstrated by field tests on a highway bridge in operation. One can expect that fast advances in the mobile telecommunication technology will further enhance the performance of the SHM network using the proposed framework for bridges and other facilities located in remote areas without the conventional wired Internet service.

A Study on SSDP protocol based IoT / IoL Device Discovery Algorithm for Energy Harvesting Interworking Smart Home

  • Lee, Jonghyeok;Han, Jungdo;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2018
  • The spread of IoT (Internet of Things) technology that connects objects based on wired / wireless networks is accelerating, and IoT-based smart home technology that constitutes a super connected network connecting sensors and home appliances existing inside and outside the home is getting popular. In addition, demand for alternative energy technologies such as photovoltaic power generation is rapidly increasing due to rapid increase of consumption of energy resources. Recently, small solar power systems for general households as well as large solar power systems for installation in large buildings are being introduced, but they are effectively implemented due to limitations of small solar panels and lack of power management technology. In this paper, we have studied smart home structure and IoT / IoL device discovery algorithm for energy harvesting system based on photovoltaic power generation, It is possible to construct an efficient smart home system for device control.

Development of Frequency Discriminated Simulative Target Generator Based on DRFM for Radar System Performance Evaluation

  • Chung, Myung-Soo;Kim, Woo-Sung;Bae, Chang-Ok;Kang, Seung-Min;Park, Dong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.213-219
    • /
    • 2011
  • Simulative target generators are needed for testing and calibrating various radar systems. The generator in this study discriminates the transmitting frequency from a radar and simulates parameters like target range, range rate, and atmospheric attenuation using the digital RF memory technique. The simulative target echo is then sent to the radar for testing and evaluation. This paper proposes a novel architecture for controlling the digital RF memory so it continually writes ADC data to the memory and reads it for the DAC with increasing one step address in order to control the delay of target range in a simple way. The target echo is programmed according to various preprogrammed scenarios and is generated in real time using a wireless local area network (LAN). To analyze the detected and generated target information easily, the system times for the radar and simulative target generator are synchronized using a global positioning system (GPS).

A Study on Caching Methods in Client-Server Systems for Mobile GIS (모바일 GIS를 위한 클라이언트-서버 시스템에서 캐슁기법 연구)

  • 김진덕;김미란;최진오
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.201-204
    • /
    • 2002
  • Although the reuse of the cached data for scrolling the map reduces the amount of passed data between client and server, it needs the conversions of data coordinates, selective deletion of objects and cache compaction at client. The conversion is time intensive operation due to limited resources of mobile phones such as low computing power, small memory. Therefore, for the efficient map control in the vector map service based mobile phone, it is necessary to study the method for reducing wireless network bandwidth and for overwhelming the limited resources of mobile phone as well. This paper proposes the methods for caching pre-received spatial objects in client-server systems for mobile GIS. We also analyze the strengths and drawbacks between the reuse of cached data and transmission of raw data respectively.

  • PDF