• Title/Summary/Keyword: wire breakage

Search Result 49, Processing Time 0.021 seconds

Analysis of wet Wire Drawing Process and Pass Redesign to Reduce Wire Breakage (습식 신선공정 해석 및 단선율 저감을 위한 패스 재설계)

  • 이상곤;김민안;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1034-1037
    • /
    • 2002
  • Wet wire drawing process is used to produce fine wire in the industrial field. The production of fine eire by using wet wire drawing process with appropriate dies pass schedule would be impossible without understanding of relationship between process parameters such as material properties, dies reduction, friction conditions, drawing speed etc. However, up to new, dies pass schedule of wet wire drawing process has performed by trial and error of expert. Therefore, this study investigates the relationship between process parameters quantitatively and analyzes a conventional wet wire drawing process. Using the results, the conventional pass schedule can be redesigned to reduce the wire breakage during wet wire drawing. To verily the result of this study, the wet wire drawing experiment was performed. And the results between conventional process and redesigned pass schedule were compared. As the comparison of results, the wire breakage was considerably reduced in the redesigned pass schedule more than conventional pass schedule.

  • PDF

Pass Redesign for Reduction of Wire Breakage in the Wet Wire Drawing Process (습식 신선공정의 단선율 저감을 위한 패스 재설계)

  • Lee S. K.;Kim M. A.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.71-77
    • /
    • 2002
  • The Production of fine wire through wet wire drawing process with appropriate pass schedule would be impossible without understanding of relationship among many process parameters. Therefore, this paper investigates the relationship among process parameters of wet wire drawing process. In this study, it is possible to obtain the important basic data that can be used in the pass schedule of multi-pass wet wire drawing process. In order to verify the effectiveness of the analysis, pass redesign was performed based on the result of analysis to reduce the wire breakage. The wire breakage between the conventional pass schedule and the redesigned pass schedule was compared by the FE analysis and the wet win drawing experiment.

  • PDF

Structural Design of a Draw Tower for the Improved Stability and the Suppressed Wire Breakage (단선억제 및 가공정도 향상을 위한 Draw Tower의 구조 안정화 설계)

  • Nam, Kyu Dong;Ro, Seung Hoon;Yoon, Hyun Jin;Kim, Young Jo;Kil, Sa Geun;Lee, Dae Woong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.23-28
    • /
    • 2019
  • Wire breakage in drawing, which is the most critical process in glass fiber manufacturing, is caused by numerous factors such as height, drawing speed, and air flow. The vibrations of the draw tower, however, is the most dominant factor to create the wire breakage. In this study, the structure of a draw tower has been analyzed through experiments and computer simulations to figure out the main reasons of the vibrations. And the design alterations were applied to the machine to identify the effects of those alterations. The result shows that design alterations of the draw tower structure can suppress the 87% of the vibrations, and further can prevent the wire breakage.

A strain-based wire breakage identification algorithm for unbonded PT tendons

  • Abdullah, A.B.M.;Rice, Jennifer A.;Hamilton, H.R.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.415-433
    • /
    • 2015
  • Tendon failures in bonded post-tensioned bridges over the last two decades have motivated ongoing investigations on various aspects of unbonded tendons and their monitoring methods. Recent research shows that change of strain distribution in anchor heads can be useful in detecting wire breakage in unbonded construction. Based on this strain variation, this paper develops a damage detection model that enables an automated tendon monitoring system to identify and locate wire breaks. The first part of this paper presents an experimental program conducted to study the strain variation in anchor heads by generating wire breaks using a mechanical device. The program comprised three sets of tests with fully populated 19-strand anchor head and evaluated the levels of strain variation with number of wire breaks in different strands. The sensitivity of strain variation with wire breaks in circumferential and radial directions of anchor head in addition to the axial direction (parallel to the strand) were investigated and the measured axial strains were found to be the most sensitive. The second part of the paper focuses on formulating the wire breakage detection framework. A finite element model of the anchorage assembly was created to demonstrate the algorithm as well as to investigate the asymmetric strain distribution observed in experimental results. In addition, as almost inevitably encountered during tendon stressing, the effects of differential wedge seating on the proposed model have been analyzed. A sensitivity analysis has been performed at the end to assess the robustness of the model with random measurement errors.

Fracture and Dislocation of Lisfranc Joint: Treatment with Screw and Kirschner Wire (리스프랑 관절 골절 및 탈구: 나사와 Kirschner 강선을 이용한 치료)

  • Ha, Dong-Jun;Kim, Jeon-Gyo;Gwak, Heui-Chul;Jang, Yue-Chan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.19 no.4
    • /
    • pp.181-187
    • /
    • 2015
  • Purpose: The purpose of this study is to retrospectively analyze the clinical results of screws and Kirschner wire (K-wire) fixation in patients with fracture dislocation of Lisfranc joint and the consequence of screw breakage. Materials and Methods: Sixty patients underwent Lisfranc joint open reduction and removal of internal fixators from January 2007 to December 2011. Forty-nine cases (81.7%) underwent operations with screw alone, and 11 cases (18.3%) underwent operations with both screws and K-wires. Type of internal fixators, duration of internal fixator removal, breakage of internal fixators and satisfaction with reduction were investigated. Additionally, American Orthopaedic Foot and Ankle Society (AOFAS) midfoot scales were analyzed. Results: The internal fixator was broken in 5 cases (8.3%). The average duration of instrument removal was 154 days in the non-broken screw group and 268.6 days in the broken screw group (p<0.05). The average AOFAS midfoot scale was 77.4 in the non-broken screw group and 74.2 in the broken screw group. The most commonly damaged portion was the first tarsometatarsal (Lisfranc) joint. Conclusion: Treatment with screws and K-wires was effective in patients with fracture dislocation of Lisfranc joint. The appropriate time for screw removal should be considered.

Evaluation of Replace period and Useful lifetime of the wire ropes for the Passenger's Elevator (승객용 엘리베이터 와이어로프의 유효수명 및 교체시기 평가)

  • Son, Doo-Ik;Park, Jae-Suk;Oh, Hwan-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.35-38
    • /
    • 2003
  • The wire rope, one of the component of the elevator, is extremely important for the sage operation of the elevator. That is why the wire rope is replaced at a specific interval regradless of the operating conditions or the degree of damage to prevent the breakage of the wire rope. This is the waste of resources, causing economic and environmental loss. This paper has surveyed and analyzed and analyzed the status of replacing wire-rope by buildings that use elevators, in order to compare the replacement cycles of the wire rope under each operating conditions.

A Study on New Twist-Diamond Wire Characteristics for Improving Processing Performance (트위스트 다이아몬드 와이어의 성능향상을 위한 특성평가에 관한 연구)

  • Park, Chang-Yong;Kweon, Hyun-Kyu;Peng, Bo;Jung, Bong-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.26-33
    • /
    • 2016
  • In this study, a new method to develop a fixed diamond wire for silicon wafer machining by the multi-wire cutting method was developed. The new twist diamond wire has improved performance with high breaking strength and chip flutes structure. According to these characteristics, the new twist diamond wire can be used in the higher speed multi-wire cutting process with a long lifetime. Except the design of the new structure, the twist diamond wire is coating by electroless-electroplating process. It is good for reducing breakage and the falling-off of diamond grains. Based on the silicon material removal mechanism and performance of the wire-cutting machine, the optimal processing condition of the new twist diamond wire has been derived via mathematical analysis. At last, through the tensile testing and the machining experiments, the performance of the twist diamond wire has been obtained to achieve the development goals and exceed the single diamond wire.

Analysis of Multi-Pass Wet Wire Drawing Process and Its Application (다단 습식 신선공정 해석 및 적용)

  • Lee S. K.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.689-695
    • /
    • 2005
  • Multi-pass wet wire drawing process is used to produce fine wire in the industrial field. The production of fine wire through multi-pass wet wire drawing process with appropriate dies pass schedule would be impossible without understanding the relationship among many process parameters such as material properties, dies reduction, friction conditions, drawing speed etc However, in the industrial field, dies pass schedule of multi-pass wet wire drawing process has been executed by trial and error of experts. This study investigated the relationship among many process parameters quantitatively to obtain the important process information fur the appropriate pass schedule of multi-pass wet wire drawing process. Therefore, it is possible to predict the many important process parameters of multi-pass wet wire drawing process such as dies reduction, machine reduction, drawing force, backtension force, slip rate, slip velocity rate, power etc. The validity of the analyzed drawing force was verified by FE simulation and multi-pass wet wire drawing experiment. Also, pass redesign was performed based on the analyzed results, and the wire breakage between the original pass schedule and the redesigned pass schedule was compared through experiment.

Pass Design of wet-Drawing with Ultra High Speed for Steel Cord (Steel Cord 생산을 위한 초고속 습식 신선 패스 설계)

  • Hwang Won Ho;Lee Sang Gon;Kim Byung Min;Ko Woo Shick
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.785-790
    • /
    • 2005
  • High-speed multi-pass wet wire drawing has become very common for production of high-carbon steel cord because of the increase in customer demand and production rates in real industrial fields. Although, the wet wire drawing process is performed at a high speed usually above 1000m/min, greater speed is required to improve productivity. However, in the high-carbon steel wire drawing process, the wire temperature rises greatly as the drawing speed increase. The excessive temperature rise makes the wire more brittle and finally leads to wire breakage. In this study, the variations in wire temperature during the multi-pass wet wire drawing process were investigated. A multi-pass wet wire drawing process with 21 passes, which is used to produce steel cord, was redesigned by considering the increase in temperature. Through a wet wire drawing experiment, it was possible to increase the maximum final drawing speed to 2000m/min.

A Study on the Minimization of Dent Marks due to Mold Tooth Teeth Generated During Wave Forming of Stainless Steel Wire (STS 316Ti) (스테인리스 스틸 강선(STS 316Ti)의 웨이브 성형 시 발생되는 금형 치절에 의한 찍임 자국 최소화에 관한 연구)

  • Moon, Hyunchol;Bae, Soohan;Sung, Hyokyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.98-106
    • /
    • 2022
  • Among the parts assembled in the gas receiver of a marine engine, the titanium alloy stainless steel (STS 316Ti) wire mesh serving as a filter was broken, and the related part, the turbine fan of the turbocharger, was damaged. In this study, a sample of the grid wire mesh was collected and the cause of breakage was analyzed, and a method of minimizing the dent mark caused by the mold during wire forming, which is one of the most direct causes, was studied. In addition, the optimum mold shape was realized through FEM simulation, and the wire wave molding machine capable of controlling the speed was improved by supplementing the problems of the existing wire wave molding machine, thereby improving durability with minimal dent marks.