• Title/Summary/Keyword: winglet

Search Result 34, Processing Time 0.027 seconds

Optimal Design for a Conic Winglet of a Dual Type Combined Fan (이중구조팬의 Conic Winglet 최적설계)

  • Kim, Jin-Wook;Kim, Woo-Teak;Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.468-476
    • /
    • 2016
  • In this study, the conic winglet which is made by rotating wing tip airfoil by each 3 axis is applied to the dual type combined fan to reduce the wing tip leakage loss. Computational Fluid Dynamics is used to calculate the loss and optimum technique is used to get minimum loss. Optimization results shows that total pressure loss coefficient was reduced by 3.4 %, and optimization model was a bended shape at the end of wing forward to pressure side.

Verification of Winglet Effect and Economic Analysis Using Actual Flight of A321 Sharklet Model (A321 Sharklet 모델의 운항실적을 이용한 윙렛 장착 효과 검증 및 경제성 분석)

  • Jang, Sungwoo;Lee, Youngjae;Kim, Kangwook;Yoo, Jae Leame;Yoo, Kwang Eui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.273-279
    • /
    • 2021
  • Winglets are specialized wingtip devices to reduce induced drag, and they have been installed on Boeing-made aircraft since the 1980s, Airbus has also developed a winglet named 'Sharklet' since 2009 and has started providing them as an option to the A320 Family. The winglet has the effect of improving take-off performance, reducing fuel consumption, increasing payload, and increasing flight distance by reducing the induced drag generated at the tip of the wing. The purpose of this study is to analyze the actual flight data of the sharklet-installed and non-sharklet-installed models of the A321 aircraft to verify the fuel efficiency improvement due to the winglet installation, and to analyze the economic analysis accordingly. Through this, it can be used to determine the winglet installation when introducing an aircraft or to make a decision for upgrading the existing aircraft. To this end, a case study on the aerodynamic characteristics and effects of the winglet installation was conducted, and the economic analysis was verified.

Numerical Study of Aircraft Winglet Mold Manufacturing using Flexible Forming (가변성형기술을 활용한 항공기 윙렛용 몰드 제작에 관한 수치적 연구)

  • Park, J.W.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.482-488
    • /
    • 2014
  • Flexible forming technology has advantages in sheet metal forming, because it can be implemented to produce various shaped molds using a single apparatus. Due to this advantage, it is possible to apply it to the manufacture of an aircraft winglet mold. Presently, most aircraft winglets are manufactured from composite materials. Therefore, the mold for the curing process is an essential element in the fabrication of such composite materials. Compared to conventional mold forming, flexible forming has some advantages such as reduced manufacturing cost and uniformity of mold thickness. If the thickness of the mold is consistent, then the heat transfer will occur uniformly during the curing process leading to improved formability of the composite material. In the current study, numerical simulations were performed to investigate the possibility of flexible forming for manufacturing of the winglet mold. In order to match the size of the actual product, the shape of objective surface was divided to fit the dimensions of the apparatus. The results from the numerical simulations are compared with the objective surface to verify the accuracy. In conclusion, the current study confirms the feasibility and the potential to manufacture winglet molds by flexible forming.

STRUCTURAL DEFORMATION EFFECT ON THE AERODYNAMICS OF A WING WITH WINGLETS (Winglet이 부착된 날개의 구조변형에 의한 공력 변화)

  • Lee, Y.M.;Kang, Y.J.;Jung, S.K.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.39-42
    • /
    • 2009
  • The aerodynamic characteristics of aircraft winglet with structural deformation was investigated using the static FSI(Fluid-Structure Interaction) system. The system, comprised of CAD, CFD, CSD, VSI, and grid regeneration modules, was constructed. In the process VSI, grid regeneration, and integration modules were developed to combine CSD and CFD modules. As a test model, KC-135A, the double winglet suggested by Whitcomb, was selected and its aerodynamic characteristics for the rigid and deformable models was calculated by applying the static FSI system. As a result, the lift and drag coefficients of test models were reduced to 11% and 1.3%, respectively.

  • PDF

Performance Evaluation in Fin-Tube Heat Exchanger by Tow-In Winglet Pairs (Tow in 와류발생기에 의한 핀-관 열교환기의 성능실험)

  • ;Kahoru Torii
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • To reduce the air side pressure drop in air-cooled heat exchanger, tow-in type winglet vortex generators are applied. A specially designed multiple-channel test core was used in the experiments for the various geometry of winglet vortex generators. The proposed tow-in type vortex generator gives significant separation delay, reduces form drag, and removes the zone of poor heat transfer from near-wake of the tubes. The results show the significant pressure drop reduction for the tow-in win91e1 vortex generators with the similar enhancement of the heat transfer as other vortex generator applications in heat exchanger. In the range of Reynolds number of 350 to 2100 the pressure drop decrease 8∼15% and 34∼55% for the in-line and staggered tube banks, respectively, compared to those without vortex generators.

Investigation of heat/mass transfer coefficients in a dimple with upstream rectangular winglet pair (델타윙에 의한 이차유동이 딤플의 열/물질전달 특성에 미치는 영향에 대한 연구)

  • Kwon, Hyun-Goo;Hwang, Sang-Dong;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2029-2032
    • /
    • 2008
  • In this study, we have investigated the effects of upstream rectangular winglet pair (RWP) on the heat/mass transfer coefficients in a dimple. Dimple print diameter was fixed at 20mm and the dimple depth was 4.0mm (0.4H). The dimple surface was coated with naphthalene for mass transfer experiment and the test plate was positioned at a rectangular straight duct whose aspect ratio (W/H) was 20. A rectangular winglet pair was positioned at y/d=-2.5. The RWP angle ($\beta$) was varied from $15^{\circ}$ to $60^{\circ}$. The Reynolds number, based on the duct height (H), was 5,000. with changing the RWP angle ($\beta$), the induced vortices had different flow characteristics; longitudinal or transversal vortices. These variation of induced vortices affected on the heat/mass transfer characteristics in the dimple.

  • PDF

Application with Winglet-Type Vortex Generators in an In-line Tube Arrangement (정렬형 관 배열에서의 와류발생기 응용)

  • Kwak, Kyung-Min
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.241-247
    • /
    • 2005
  • Heat transfer enhancement and pressure loss penalty caused by three-row winglets built in three-row tube-bundles in an in-line arrangement, are compared between 'common flow up' and 'common flow down' winglet configurations. The 'common flow down' winglet-pairs recommended by the previous researchers bring about $10\%$ to $25\%$ increase in heat transfer enhancement and $20\%$ to $35\%$ increase in pressure loss penalty, in comparison with fin-tube bundles without winglets. For the 'common flow up' winglet-pairs, the spanwise distance between the trailing edges (${\Delta}y$) of winglet pairs was changed and investigated. Two types ot winglet are applied for triangular and rectangular shapes. In the triangular winglets with ${\Delta}y$=5 mm in in-line tube bundles, the heat transfer increased up to $10\%$, and simultaneously the pressure loss decreased by $8\%$ to $15\%$ for the Reynolds number (based on two times channel height) ranging from 300 to 2700, when the 'common flow up' winglets were built in. The performance of fin-tube bundles with triangular winglets is much superior to the rectangular one, because of the smaller pressure-loss penalty.

Effects of Pressure-Side Winglet at an Elevation of Tip Surface on the Tip-Leakage Flow and Aerodynamic Loss Downstream of a Turbine Blade Equipped with Pressure-Side Squealer Tip (압력면익단소익이 터빈 동익 압력면스퀼러팁 하류의 팁누설유동 및 압력손실에 미치는 영향)

  • Cheon, Joo Hong;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.645-651
    • /
    • 2016
  • Effects of pressure-side winglet width on the tip leakage flow and aerodynamic loss downstream of a turbine blade with a pressure-side squealer rim have been investigated for the tip gap-to-span ratio of h/s = 1.36%. The pressure-side squealer has a fixed height-to-span ratio of $h_p/s=3.75%$ and the pressure-side winglet, which is installed at an elevation of tip surface, has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results show that with increasing w/p, aerodynamic loss in the passage vortex region decreases, whereas that in the leakage flow region increases. As a result, the mass-averaged loss coefficient all over the measurement plane tends to decrease minutely with the increment of w/p. It is concluded that the pressure-side winglet for the pressure-side squealer tip can hardly contribute to the tip-leakge loss reduction.

A Convergent Study on the Air Flow due to the Configuration of Aircraft Edge Wing (항공기 날개 끝부분의 형상에 따른 공기 유동에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.215-219
    • /
    • 2021
  • The flow analyses around the wing of airplane installed with winglet or sharkelt were carried out in this study. At the model without winglet, it can be seen that the air flows beside the wing and the flow is concentrated at the end of wing. At the model of winglet or sharklet, the pressure on the bottom of the wing happens to be lower in the wide area than for model without winglet. At the analysis result, the air flowing next to the wing can be seen to go over and rotates over the main wing. The model with the sharklet shows that the flow rate is the fastest. In case of model with sharklet, it is thought that the maximum total pressure of flow is distributed at the bottom of the wing, which can further improve the lift force of the wing. It is thought that the analysis results in this study on the air flow due to the configuration of aircraft edge wing can be helped at its convergent research.

Flow Analysis of Heat Exchanger with Delta Winglet Vortex Generators on CFD (와류 생성기가 설치된 핀 튜브 열교환기의 열 유동해석)

  • Hwang, Seong-Won;Jeong, Ji-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1166-1171
    • /
    • 2009
  • Fin-tube heat exchangers are widely used in refrigeration systems. To improve the performance of fin-tube heat exchangers, the shape of plain fin was developed in slit fin and louver fin. These pins have higher heat transfer performance as well as larger pressure drop. Recent studies of a delta winglet vortex generators(DWVG) show less heat transfer capacity than louver fin. However, the DWVG have very small pressure drop. This paper compares the performance for the plain fin and DWVG fin in terms of flow characteristics and heat transfer based on CFD analyses. The DWVG generate vortex and delayed flow separation and leads to a reduction of a wake region behind a tube. The results show that the DWVG produce improved heat transfer and reduced pressure drop compared to a plain fin. This result is opposite to the Reynolds analogy.

  • PDF