DOI QR코드

DOI QR Code

Verification of Winglet Effect and Economic Analysis Using Actual Flight of A321 Sharklet Model

A321 Sharklet 모델의 운항실적을 이용한 윙렛 장착 효과 검증 및 경제성 분석

  • Received : 2020.10.21
  • Accepted : 2021.02.23
  • Published : 2021.04.01

Abstract

Winglets are specialized wingtip devices to reduce induced drag, and they have been installed on Boeing-made aircraft since the 1980s, Airbus has also developed a winglet named 'Sharklet' since 2009 and has started providing them as an option to the A320 Family. The winglet has the effect of improving take-off performance, reducing fuel consumption, increasing payload, and increasing flight distance by reducing the induced drag generated at the tip of the wing. The purpose of this study is to analyze the actual flight data of the sharklet-installed and non-sharklet-installed models of the A321 aircraft to verify the fuel efficiency improvement due to the winglet installation, and to analyze the economic analysis accordingly. Through this, it can be used to determine the winglet installation when introducing an aircraft or to make a decision for upgrading the existing aircraft. To this end, a case study on the aerodynamic characteristics and effects of the winglet installation was conducted, and the economic analysis was verified.

윙렛은 유도항력을 줄이기 위한 장비로, 1980년대부터 보잉사에서 제작한 항공기에 장착되기 시작했고, 에어버스에서는 2009년부터 'Sharklet'이라는 이름의 윙렛을 개발하여 A320 Family에 장착 옵션으로 제공하기 시작했다. 윙렛은 날개 끝단에서 발생하는 유도항력을 감소시켜 이륙성능 향상, 연료소모량 감소, 유상탑재량 증대 및 운항거리 증가의 효과를 내고 있다. 본 연구는 Sharklet이 장착된 A321 항공기와 미장착된 A321 항공기의 실제 운항 데이터를 분석하여 윙렛 장착에 따른 연료 효율성 향상을 검증하고 이에 따른 경제성 분석을 목적으로 한다. 이를 통해 항공기 도입 시 윙렛 장착 사양 결정 혹은 기존 항공기의 업그레이드를 위한 의사 결정에 활용할 수 있다. 이를 위해 윙렛 장착에 따른 공력 특성 연구 사례조사와 효과 확인 연구를 수행하고 경제성을 검증하였다.

Keywords

References

  1. "Winglets and Sharklets," http://theflyingengineer.com/flightdeck/winglets-and-sharklets/
  2. "When is a winglet a sharklet?," https://www.macleans.ca/economy/business/aviation-industry-on-a-wing-and-tip/
  3. Kang, J. H., Rho, O. H. and Lee, D. H., "Numerical Analysis of Transonic Flow around Wing/Winglet Configuration," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 21, No. 1, 1993, pp. 1-11.
  4. Lee, E. K., Kim, C. W. and Shim, J. Y., "Winglet Characteristics for a Very Light Jet," Proceeding of the Korean Society for Aeronautical and Space Sciences Fall Conference, November 2007, pp. 197-200.
  5. Lee, E. K., Ahn, S. M., Yeom, C. H. and Lee, D. S., "Incidence Angle Effects on Aerodynamic Characteristics of Winglets," Proceeding of the Korean Society for Aeronautical and Space Sciences Fall Conference, November 2008, pp. 192-195.
  6. Jung, J. H., Min, S. G., Kang, H. M., Jun, S. O., Lee, D. H., Seo, H. S. and Jeong, H. H., "Aerodynamic Analysis of Winglet for Small Aircraft using Shape Modeling Function," Proceeding of the Korean Society for Aeronautical and Space Sciences Spring Conference, April 2010, pp. 153-156.
  7. Park, Y. M., Lee, J. H. and Lee, H. C., "Design and Performance Analysis of 95 Passenger Turboprop Regional Aircraft with Winglet," Proceeding of the Korean Society for Aeronautical and Space Sciences Fall Conference, November 2013, pp. 1497-1500.
  8. Narayan, G. and John, B., "Effect of winglets induced tip vortex structure on the performance of subsonic wings," Aerospace Science and Technology, Vol. 58, November 2016, pp. 328-340. https://doi.org/10.1016/j.ast.2016.08.031
  9. Elham, A. and van Tooren, M. J. L., "Winglet multi-objective shape optimization," Aerospace Science and Technology, Volume 37, August 2014, pp. 93-109. https://doi.org/10.1016/j.ast.2014.05.011
  10. Budd, T. and Suau-Sanchez, P., "Assessing the fuel burn and CO2 impacts of the introduction of next generation aircraft," Research in Transportation Business and Management, Vol. 21, December 2016, pp. 68-75. https://doi.org/10.1016/j.rtbm.2016.09.004
  11. Cansino, J. M. and Roman, R., "Energy efficiency improvements in air traffic: The case of Airbus A320 in Spain," Energy Policy, Vol. 101, February 2017, pp. 109-122. https://doi.org/10.1016/j.enpol.2016.11.027
  12. Muller, C. S., Kieckhafer, K. and Spengler, T. S., "The influence of emission thresholds and retrofit options on airline fleet planning: An optimization approach," Energy Policy, Vol. 112, January 2018, pp. 242-257. https://doi.org/10.1016/j.enpol.2017.10.022
  13. "Why Boeing Has Winglets And Airbus Has Sharklets," https://simpleflying.com/boeing-winglets-airbus-sharklets/
  14. ICAO, 2013 Environmental Report, p. 160.
  15. Eguea, J. P., da Silva, G. P. G. and Catalano, F. M., "Fuel efficiency improvement on a business jet using a camber morphing winglet concept," Aerospace Science and Technology, Vol. 96, January 2020, 105542. https://doi.org/10.1016/j.ast.2019.105542
  16. Jang, S. W. and Yoo, K. E., "New Fuel Efficiency Model Setup and Airline's Method to Enhance Fuel Efficiency," Doctoral Thesis, 2019, pp. 40-51.
  17. Park, J. S. and Park, J. W., Financial Management, Dasan Publishing House, 1999, p. 271.