• 제목/요약/키워드: wing walls

검색결과 16건 처리시간 0.03초

An experimental study on strengthening of vulnerable RC frames with RC wing walls

  • Kaltakci, M. Yasar;Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • 제41권6호
    • /
    • pp.691-710
    • /
    • 2012
  • One of the most popular and commonly used strengthening techniques to protect against earthquakes is to infill the holes in reinforced concrete (RC) frames with fully reinforced concrete infills. In some cases, windows and door openings are left inside infill walls for architectural or functional reasons during the strengthening of reinforced concrete-framed buildings. However, the seismic performance of multistory, multibay, reinforced concrete frames that are strengthened by reinforced concrete wing walls is not well known. The main purpose of this study is to investigate the experimental behavior of vulnerable multistory, multibay, reinforced concrete frames that were strengthened by introducing wing walls under a lateral load. For this purpose, three 2-story, 2-bay, 1/3-scale test specimens were constructed and tested under reversed cyclic lateral loading. The total shear wall (including the column and wing walls) length and the location of the bent beam bars were the main parameters of the experimental study. According to the test results, the addition of wing walls to reinforced concrete frames provided significantly higher ultimate lateral load strength and higher initial stiffness than the bare frames did. While the total shear wall length was increased, the lateral load carrying capacity and stiffness increased significantly.

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF

A PRELIMINARY STUDY OF EFFECT OF THE GREEN FEATURE - WING WALLS ON NATURAL VENTILATION IN BUILDINGS

  • Cheuk Ming Mak;Jian Lei Niu;Kai Fat Chan
    • 국제학술발표논문집
    • /
    • The 1th International Conference on Construction Engineering and Project Management
    • /
    • pp.814-819
    • /
    • 2005
  • There is growing consciousness of the environmental performance of buildings in Hong Kong. The Buildings Department, the Lands Department and the Planning Department of the Hong Kong Government issued the first of a series of joint practice notes [1] to promote the construction of green and innovative buildings. Green features are architectural features used to mitigate migration of noise and various air-borne pollutants and to moderate the transport of heat, air and transmission of daylight from outside to indoor environment in an advantageous way. This joint practice note sets out the incentives to encourage the industry in Hong Kong to incorporate the use of green features in building development. The use of green features in building design not only improves the environmental quality, but also reduces the consumption of non-renewable energy used in active control of indoor environment. Larger window openings in the walls of a building may provide better natural ventilation. However, it also increases the penetration of direct solar radiation into indoor environment. The use of wing wall, one of the green features, is an alternative to create effective natural ventilation. This paper therefore presents a preliminary numerical study of its ventilation performance using Computational Fluid Dynamics (CFD). The numerical results will be compared with the results of the wind tunnel experiments of Givoni.

  • PDF

연약지반에서 날개벽 기초의 침하량 산정 (Settlement Behavior of Wing-wall type Foundation on Soft Grounds)

  • 장시경;이광열;황재홍;정진교
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1164-1169
    • /
    • 2009
  • Piled raft foundation is commonly used for structure on deep soft soil deposit rather than end bearing piles to control differential settlement. However, it is still expensive for light weight structures. Wing-wall type foundation has been successfully applied to reduce average settlement for light weight structure. This study will further investigate this type of foundation using bench scale experiments on clay and sand. Numerical analysis and approach method are used to verify load settlement curve of wing-wall foundation on experimentally study. Furthermore, normalized settlement curves are applied to define prediction of settlement on wing-wall foundation. In the result settlement on wing-wall foundation can be effectively done by increasing the length of wall instead of number of walls and equation for calculating average settlement can be derived using normalized load settlement curve.

  • PDF

삼천포 수역 죽방렴의 어구구조와 해수유동 특성 (Characteristics of Current Patterns and Structure of Bamboo Weir in Samchunpo Water Area)

  • 강경미;신현옥
    • 수산해양기술연구
    • /
    • 제38권1호
    • /
    • pp.69-78
    • /
    • 2002
  • In order to examine the directional suitability of the axis direction of the fishing gear against the current, the experiments were carried out at the bamboo weir in Samchunpo water area from January, 2000 to September, 2001 The results of the study are as follows: In the experimental fishing gear constructed in the "V" shape, the range between two reference piles located at the entrance was 2.5m. The direction of bamboo weir′s axis was 355.5$^{\circ}$ The length of the left wing and those from the reference pile to the starting point of a curve were 106.0m, 7.5m, respectively. The length of the right wing and those from the reference pile to the starting point of a curve were 79.0m, 10.0m, respectively. Depths around the left and right stone wall that drove the steel pile were 5.0~6.5m and 6.5~9.5m, respectively. Also, depths on the bamboo weir′s axis and around the sack were 7.0~8.0m and about 8.0m, respectively. The maximum height of stone walls at the point of the left wing, the right wing and around the sack on the bamboo weir\` axis were 3.0m, 4.7m and 4.0m, respectively, Widths of stone walls at the point of both of the wings and around the sack on the bamboo weir\`s axis were 10.0~l4.0m, 22.0~25.0m, respectively. The averaging current direction on ebb tide was measured two times and it was 169.2$^{\circ}$ but the direction had about a 6.3$^{\circ}$ difference from the bamboo weirs axis. The maximum current speed appeared two to three hours later from the time of high tide and the current speed over 80.0cm/s lasted during about two Hours on the ebb tide In the case of a straight type wing In the bamboo weir, the eddy out of the left wing was comparatively big and the current on the right side from the bamboo weir′s axis had a tendency in turning to the right wing side. But in the case of a curve type wing, the eddy and tendency reduced significantly. It was thought that the experimental fishing gear was set suitably from the result of this simulation.

날개벽이 있는 기둥의 구조적 거동 특성 (Structural Behaviour of the Wing Wall with Columns)

  • 강영웅;양원직;강대언;이원호;송동엽
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.73-74
    • /
    • 2009
  • 기존 건축물에는 용도상 복잡한 형상의 기둥에 벽이 붙는 경우가 많으며 대표적인 것으로 날개벽이 있다. 날개벽이 붙는 기둥 및 비내력벽체가 날개벽화가 되면 강성이 크나 연성이 줄어드는 등 부재의 전반적인 거동에 영향을 주는 경우가 많다. 이런 부재 모두는 대변형시 전단파괴의 가능성이 있으며 내력열화가 발생하기 쉽다. 기존 건축물의 내진 성능평가 시 연직부재의 전단내력과 휨 내력의 산정은 가장 중요한 사항으로 간주하여 설계되고 있으나, 현재까지 국내에서는 날개벽이 있는 기둥이 구조물의 거동에 미치는 영향에 대해서는 연구가 미흡한 실정이다. 따라서 본 연구에서는 날개벽 있는 기둥의 기초적인 연구를 목적으로 구조적 거동특성에 관한 실험을 수행하였다.

  • PDF

헬리콥터 로터의 폐쇄형 및 개방형 풍동시험 벽면효과 보정기법 연구 (Wind Tunnel Wall Interference Correction Method for Helicopter Rotor Tests with Closed and open Test Sections)

  • 이현정;장종윤;이승수;김범수;송근웅
    • 한국항공우주학회지
    • /
    • 제36권7호
    • /
    • pp.621-627
    • /
    • 2008
  • 풍동에서 측정된 공력자료에는 풍동벽면의 영향으로 인하여 불가항력적인 오차가 포함되어 있다. 벽면영향이 없는 공력자료를 얻기 위해서는 이러한 원하지 않는 벽면효과를 제거 하여야 한다. 유선곡률 효과는 풍동벽면의 영향으로 유선의 곡률이 자유 흐름의 것과 다르기 때문에 발생한다. 고정익 항공기에 사용되고 있는 전통적인 유선곡률 효과를 보정방법인 Glauert의 보정방법은 회전익 항공기에 적용이 적절하지 않다. 본 논문에서는 로터에 적절한 후류모델을 사용하는 Heyson의 보정방법을 사용하여 로터축 기울어짐 각과 동압을 보정하였다. Heyson 보정방법의 결과를 Glauert 보정방법의 결과와 비교하였다.

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.

날개벽이 붙는 기둥의 구조적 거동에 관한 실험적 연구 (Experimental Research on Structural Behaviour of the Wing Wall Attached Columns)

  • 강영웅;양원직;강대언;송동엽;이원호;태경훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.29-32
    • /
    • 2008
  • 본 연구에서는 1988년 이후 설계된 많은 구조물들이 내진 성능을 갖추지 못하고 있는 실정이다. 기존 건축물에는 용도상 복잡한 형상의 벽이 붙는 경우가 많으며 대표적인 것으로 날개벽이 있다. 날개벽이 붙는 기둥 및 날개벽이 있으므로 인해 단스팬보화가 되는 보가 생기면 강성이 크나 연성이 줄어드는 등 부재의 전반적인 거동에 영향을 주는 경우가 많다. 이런 부재 모두는 대변형시 전단파괴의 가능성이 있으며 내력열화가 발생하기 쉽다. 또한 이들 부재가 기둥의 역학적 거동, 파괴성상에 커다란 영향을 주는 것은 과거의 지진피해의 조사보고에 의해 지적되고 있다. 이를 위해 현행의 설계에서는 날개벽에 구조 slit를 설치하여 기둥과 절연을 강구하여 기둥내력에는 영향을 미치지 않는 것으로 하여 설계되어지고 있다. 기존 건축물의 내진 성능평가 시 연직부재의 전단내력과 휨 내력의 산정은 가장 중요한 사항으로 간주하여 설계되고 있으나, 현재까지 국내에서는 날개벽이 있는 기둥이 미치는 영향에 대해서는 연구가 전무한 실정이다.

  • PDF

개선 와법을 이용한 Weis-Fogh형 수차의 유체역학적 특성계산 (Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method)

  • 노기덕
    • 대한기계학회논문집B
    • /
    • 제38권3호
    • /
    • pp.203-210
    • /
    • 2014
  • 본 연구는 Weis-Fogh형 수차의 유체역학적 특성을 개선 와법으로 수치계산한 것이다. 날개(NACA0010에어포일)와 양쪽 수로 벽은 소스(Source) 및 볼텍스 판넬로 근사하였고, 자유 볼텍스는 각 물체 전체표면에서 도입하였다. 타임스텝마다 날개를 이동시켜가며 본 수차의 유동장 즉 비정상 속도장과 압력장을 계산하였다. 계산변수로는 주요 설계인자인 날개 뒷전에서 날개 축까지의 거리, 수로 폭 및 최대 열림각으로 하였다. 본 수차의 1매의 날개에 대한 최대 효율 및 출력계수는 속도비 U/V=2.0에서 각각 26% 및 0.4였다. 본 수차의 유동장은 날개가 수로 내에서 비정상적으로 움직이기 때문에 매우 복잡하다. 그러나 개선 와법을 이용하여 명확하게 계산할 수 있었다.