• 제목/요약/키워드: wing wake

검색결과 68건 처리시간 0.02초

이산와류법을 사용한 비평면 지면 와류전개 연구 (Study on the Wake Evolution on the Non-Planar Ground Using a Discrete Vortex Method)

  • 한철희
    • 융복합기술연구소 논문집
    • /
    • 제6권2호
    • /
    • pp.21-24
    • /
    • 2016
  • Accurate simulation of wakeshapes behind a wing is important for the performance prediction of the aircraft and the wake hazard problem in the airport. In the present study, wakeshapes behind a wing inside tunnels are simulated in regard to the development of wing-in-ground effect vehicles. A discrete vortex method with a nonplanar ground modelling is used for the simulation. It was found that the wingtip vortices move toward outboard directions when the wing is in ground effect. When the wing is placed inside tunnels, the wingtip vortices move along the tunnel wall with counter clockwise direction. As the gap between the wingtip and the tunnel decreases, the wingtip vortices move further along the tunnel wall. Both vortices from bothsides of the wing will murge, which will be studied in future using a viscous computation.

잠자리 유헝 날개의 무차원 진동수에 따른 가시화 연구 (Visualization Study on a Reduced Frequency of a Dragonfly type wing)

  • 김송학;장조원
    • 한국가시화정보학회지
    • /
    • 제2권2호
    • /
    • pp.58-65
    • /
    • 2004
  • The purpose of this visualization study is to investigate the effect of reduced frequency qualitatively by examining wake patterns for dragonfly flight motion. Dragonflies have two pairs of wing (a forewing and hindwing) and flight is achieved by a pitching and plunging, so it makes a separation over the wings. The separation affects the wake pattern and changed wake pattern has an influence on lift, drag, and propulsion. This experiment was conducted by using a smoke wire technique and a camera fixed above the test section used to take a photograph of the wake. An electronic device is mounted below the test section to find the exact mean positional angle of the wing. The reduced frequency in the experiment is 0.15, 0.3 and 0.45. Results show that reduced frequency is closely related to the wake pattern that determines flight efficiency.

  • PDF

잠자리 유형 날개의 가시화 연구 : 무차원 진동수 (Visualization Study of Dragonfly Type Wing : Reduced Frequency)

  • 김송학;장조원
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.14-17
    • /
    • 2004
  • A purpose of this visual experiment is to investigate the effect of reduced frequency qualitatively by examining wake pattern change for insect flying motion. Insect is composed of two pair wing with forewing and hindwing, flying motion of insect is performed pitching and plunging so it makes a separation over the wings. The separation affects at the wake pattern and changed wake pattern has an influence on lift, drag and propulsion. This experiment is conducted by using a smoke wire technique and a camera is fixed at hindwing to take a photograph of wake. An electronic device is mounted below test section to find exact the mean positional angle of wing. The reduced frequency in experiment is 0.15, 0.3 and 0.45. We obtained the result which that reduced frequency is closely related to wake pattern that determines flight efficiency.

  • PDF

잠자리 유형 날개에 대한 흐름 가시화 (Flow Visualization for a Dragonfly Type Wing)

  • 김송학;김현석;장조원;부준홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1586-1591
    • /
    • 2004
  • Flow visualization experiments have been performed to investigate the effects of phase lag, reduced frequency qualitatively by examining wake pattern on a dragonfly type wing. The model was built with a scaled-up, flapping wings, composed of paired wings with fore- and hindwing in tandem, that mimicked the wing form of a dragonfly. The present study was conducted by using the smoke-wire technique, and an electronic device was mounted to find the exact positional angle of wing below the tandem wings, which amplitude is ranged from $-16.5^{\circ}$ to $+22.8^{\circ}$. Phase lag applied on the wings is $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The reduced frequency is 0.15, 0.3 and 0.45 to investigate the effect of reduced frequency. It is inferred through observed wake pattern that the phase lag clearly plays an important role in the wake structures and in the flight efficiency as changing the interaction of wings. The reduced frequency also is closely related to wake pattern and determines flight efficiency.

  • PDF

직사각형 평판날개의 리드래그 운동이 조합된 날개짓에 대한 비정상 VLM 공력 해석 (Aerodynamic Analysis of a Rectangular Wing in Flapping with Lead-Lag Motion using Unsteady VLM)

  • 김우진;김학봉
    • 한국항공운항학회지
    • /
    • 제14권2호
    • /
    • pp.39-44
    • /
    • 2006
  • The unsteady vortex lattice method is used to model lead-lag in flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various lead-lag motion and reduced frequency with an amplitude of flapping angle(20o). To describe a motion profile of wing tip such as elliptic, line and circle, the phase difference of flapping and lead-lag motion was changed. And the effects of the motion profile on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

  • PDF

정지 비행에서의 곤충 날개 궤적에 따른 공기역학적 특성 (The Aerodynamic Characteristics by the Insect Wing Tip Trajectory in Hovering Flight)

  • 조헌기;주원구
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.506-511
    • /
    • 2009
  • Insect flight is adapted to cope with each circumstance by controlling a variety of the parameters of wing motion in nature. Many researchers have struggled to solve the fundamental concept of insect flight, but it has not been solved yet clearly. In this study, to find the most effective flapping wing dynamics, we conducted to analyze CFD data on fixing some of the optimal parameters of wing motion such as stoke amplitude, flip duration and wing rotation type and then controlled the deviation angle by fabricating wing tip motion. Although all patterns have the similar value of lift coefficient and drag coefficient, pattern A(pear-shape type) indicates the highest lift coefficient and pattern H(pear-shape type) has the lowest lift coefficient among four wing tip motions and three deviation angles. This result suggest that the lift and drag coefficient depends on the angle of attack and the deviation angle combined, and it could be explained by delayed stall and wake capture effect.

접이식 직렬날개형 공중투하 무인비행체의 공력 모델링 및 시뮬레이션 (An Aerodynamic Modeling and Simulation of a Folding Tandem Wing Type Aerial Launching UAV)

  • 이승진;이정민;안정우;박진용
    • 한국시뮬레이션학회논문지
    • /
    • 제27권4호
    • /
    • pp.19-26
    • /
    • 2018
  • 공중투하형 무인비행체는 비행성능의 극대화 및 모기체 탑재시의 소요공간 최소화를 위하여 접이식 직렬날개를 주로 사용한다. 이러한 접이식 직렬날개는 전방날개의 후류에 의한 후방날개 간섭문제, 날개 전개시 전후방 날개에 걸리는 피봇 모멘트의 불균형 등 일반적인 형태의 고정익 비행체와 다른 독특한 공기역학적 문제를 가지고 있다. 이에 본 논문에서는 유한체적법 기반의 전산유체역학을 통하여 여러 경우에 대하여 모델링 및 시뮬레이션을 수행하였으며 접이식 직렬날개 방식 비행체의 여러 공기역학적 현상에 대해 분석하였다. 그 결과 받음각 변화에 따른 전방날개에 의한 후류영향을 최소화하기 위하여 전방 날개를 후방날개보다 수직방향으로 높게 설치할 필요가 있었다. 또한 공력에 의한 피봇모멘트를 고려시 전방날개에 비하여 후방날개가 훨씬 빠른 속도로 펼쳐질 수 있으므로 날개 펼침 기구 개발 시 이에 대한 고려가 필요함을 확인하였다.

와류 격자법에 의한 지면효과익의 성능 연구 (A Study on the Performance of the Wing In Ground Effect by a Vortex Lattice Method)

  • 정광효;장종희;전호환
    • 한국해양공학회지
    • /
    • 제12권2호통권28호
    • /
    • pp.87-96
    • /
    • 1998
  • A numerical simulation was done to investigate the performance of thin wings in close vicinity to ground. The simulation is based on Vortex Lattice Method(VLM) and freely deforming wake elements are taken into account for a sudden acceleration case. The parameters covered in the simulation are angle of attack, aspect ratio, ground clearance, sweep angle and taper ratio. In addition, the effect of the wing endplate on the ground effect is included. The wing sections used for present computations are uncambered, cambered and S-types. The present computational results are compared with other published computational results and experimental data.

  • PDF

Numerical And Experimental Studies On Wing In Ground Effect

  • Suh, Sung-Bu;Jung, Kwang-Hyo;Chun, Ho-Hwan
    • International Journal of Ocean System Engineering
    • /
    • 제1권2호
    • /
    • pp.110-119
    • /
    • 2011
  • Numerical and experimental studies were performed to investigate the aerodynamic performance of a thin wing in close vicinity to the ground. The vortex lattice method (VLM) was utilized to simulate the wing in ground (WIG) effect, which included freely deforming wake elements. The numerical results acquired through the VLM were compared to the experimental results. The experiment entailed varying the ground clearance using the DHMTU (Department of Hydromechanics of the Marine Technical University of Saint Petersburg) wing and the WIG craft model in the wind tunnel. The aero-dynamic influence of the design parameters, such as angles of attack, aspect ratios, taper ratios, and sweep angles were studied and compared between the numerical and experimental results associated with the WIG craft. Both numerical and experimental results suggested that the endplate augments the WIG effect for a small ground clearance. In addition, the vortex lattice method simulated the wake deformation following the wing in the influence of the ground effect.

자유날개 동체꺾임형 항공기의 조종성 해석 (Free-wing Tilt-body Aircraft Controllerability Analysis)

  • 박욱제
    • 한국항공운항학회지
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2011
  • The free-wing tilt-body aircraft is researched in the flight performance characteristics such as short take-off and landing capability, and reduced sensitivity to gust and center of gravity (CG) change. Due to the main wing separating from the fuselage, the high tiltable empennage, and the stub-wing strongly influencing from the propeller wake, the resulting vehicle aerodynamics and flight dynamics are quite different from those of a conventional fixed-wing aircraft. Using the governing flight dynamics model was studied previously, all of speed and body tilt angle is simulated to determine the flight envelope by a non-linear 3-DOF flight simulation analysis. Though flight performance and trimmability are studied, the flight model of free-wing tilt-body aircraft is to reduce the hidden risk and to achieve the successful flight test. It is analyzed the flight characteristics that distinguishes free-wing tilt-body aircraft from the conventional aircraft.