• 제목/요약/키워드: wind turbine system

검색결과 1,003건 처리시간 0.031초

직접구동 영구자석 풍력발전기 기술동향 (A Technical Trends of Direct-Driven Permanent Magnet Generator for Wind Turbine)

  • 이정일;권중록;김기찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.97-100
    • /
    • 2003
  • Recently, the generators for wind turbine have been manufactured with high output power such like MW class machine in order to reduce the generation cost and to increase the energy efficiency. At the same time, direct-driven generators for wind turbine have been developed and researched, which have easy maintenance and high efficiency by simplification the system through the removal of the gear box. In this paper, at first, the advantage and disadvantage between the direct-driven generator system and conventional indirect-driven system are compared. And secondly, the permanent magnet generator (PMG) for wind turbine has been rapidly improved to cope with the recent trend which requires the high power output Per one machine and the convenience for maintenance, and the PMG is adequate for direct driven system and suitable for high-efficiency and light weight. So, the characteristics and technical trend of the PMG for wind turbine is examined. At last, a suitable technical trend for development of the permanent magnet generator for wind turbine is proposed.

  • PDF

풍력-연료전지 하이브리드 시스템 출력의 동특성 분석 (Dynamic performances of output power of wind turbine and fuel-cell hybrid system)

  • 문대성;김윤성;서재진;원동준;박영호;문승일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.545-546
    • /
    • 2007
  • A hybrid system that uses a parallel combination of wind turbine and fuel cell is modeled. Wind energy source is characterized by its intermittent and variable nature. The output power generated by the fuel cell is stable and can be properly controlled. Therefore, fuel cell system can be added to the wind turbine system for the purpose of ensuring continuous power flow. Fuel cell helps to compensate power and regulate the frequency in power system. Simulation results show the effect of the hybrid system on power regulation. The excess power generated by the wind turbine was directed to an electrolyzer to generate hydrogen and the power deficit was compensated by the fuel cell.

  • PDF

복합발전 적용을 위한 1kW급 수평축 풍력터빈 유동해석 (Flow Analysis on a 1kW-class Horizontal Axis Wind Turbine Blade for Hybrid Power Generation System)

  • 이준용;최낙준;최영도
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • This study is to develop a 1kW-class small wind turbine blade which will be applicable to relatively low speed regions. For this blade, a high efficiency wind turbine blade is designed and a light and low cost composite structure blade is adopted considering fatigue life. In this study, shape design of 1kW-class small wind turbine blade for hybrid power generation system is carried out by BEMT(blade element momentum theory). X-FOIL open software was used to acquire lift and drag coefficients of the 2D airfoils used in power prediction procedure. Moreover, pressure and velocity distributions are investigated according to TSR by CFD analysis.

  • PDF

로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석 (Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility)

  • 김동만;김동현;김요한;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

개선된 PID 제어기를 이용한 Wind Turbine의 피치 제어 (Pitch Control for Wind Turbine System using Advanced PID Controller)

  • 전종현;권오신;김진성;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.831-836
    • /
    • 2011
  • The study described in this paper is aimed to maintain a constant output of wind turbine system via pitch control of wind turbine using Advanced PID(APID) controller. In order to improve dynamic response characteristic in terms of pitch angle and disturbance reject, the APID controller is developed. The structure of the APID is composed with derivative P controller and new type of integral control action. This new improved integral control has concept of error window and weight function concept. The performance of the APID control technique is compared with those of conventional ones via simulation. Simulation results show that the proposed method is effective and enhanced the dynamic performance of the system.

  • PDF

수직축 Darrieus 풍력발전 시스템의 설계에 관한 기초연구 (A Basic Study on the Desist of Vertical Axis Darrieus Turbine for Wind-Power Generating System)

  • 서영택;김기승;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.82-84
    • /
    • 1994
  • This paper presents a design of vertical axis Darrieus wind turbine for wind-power generating system. The wind turbine consists of two troposkien blades, diameter is 10m approximately, and chord length 380mm, tip ratio speed 4. The design of turbine is laid for the main data of rated wind speed 10m/s, turbine speed 78rpm, the generating power is estimated to 25kW, and this is contorted to commercial power line by means of three phase synchronous generator-inverter system.

  • PDF

계통 연계 대관령 풍력실증단지에서의 전력 품질 모니터링 (A Power Quality Monitoring of The Grid-connected Wind Turbine in Daegwallyeong Test Site)

  • 권혁준;김광호;장성일;유능수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1513-1515
    • /
    • 2004
  • This paper describe the power quality monitoring results of the grid-connected wind turbine generator in Daegwallyeong Test Site. The power quality monitoring for grid-connected wind turbine generators are important to verify their performance as the grid-connected generators. In order to measure the impacts on the grid of wind turbine generator and evaluate the performance by analyzing electrical parameters, we equipped the power quality monitoring system in the real field of the Daegwallyeong test site. The developed monitoring system gathers information by remote access through the internet. The monitoring results and the detail explanation for the developed wind turbine monitoring system is presented in the study.

  • PDF

운전정지 조건에서 5 MW 수평축 풍력터빈 로터의 풍하중 해석 (Wind Loads of 5 MW Horizontal-Axis Wind Turbine Rotor in Parked Condition)

  • 유기완;서윤호
    • 한국풍공학회지
    • /
    • 제22권4호
    • /
    • pp.163-169
    • /
    • 2018
  • 본 연구에서는 운전 정지 상태로 회전하지 않는 수평축 해상 풍력터빈 로터에서 발생하는 풍하중을 풍속, 요 각도, 방위각, 피치 각도를 달리하면서 대기경계층 내에서 작동하는 조건으로 평가하였다. 하중 예측 결과의 검증을 위해 단순화 한 블레이드 형상에 대한 블레이드 요소이론과 단순 계산치를 이용하여 얻어낸 공력 하중을 상호 비교하였으며, 코드와 비틀림 각도가 블레이드 스팬 방향에 따라 변하는 NREL 5 MW급 대형풍력터빈 로터에 대해서는 NREL에서 개발한 FAST 해석 결과와 본 연구의 해석 결과를 비교함으로써 해석 결과의 정확도를 검증하였다. 로터의 하중은 허브 중심을 원점으로 하는 고정된 3축 좌표계에 대해서 힘과 모멘트로 표현되는 6분력 하중으로 나타내었다. 따라서 이 결과는 풍력터빈 시스템의 동적 거동 해석과 로터에서 발생되는 전도 모멘트를 견디기 위해 필요한 지지 구조물의 기초하중 자료로 적용할 수 있다.

NUMERICAL SIMULATION AND VISUALIZATION OF THE FLOW AROUND THE DARIUS WIND TURBINE

  • Lee Mi Young;Kawamura Tetuya
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.45-50
    • /
    • 2005
  • A fundamental understanding of the flow around the wind turbine is important to investigate the performance of new type of wind turbine. This study presents the simulation of three dimensional flow fields around the Darius wind turbine as an example. Incompressible Navier-Stokes equations are used for this simulation. The rotating coordinate system that rotates in the same speed of the turbine is used in order to simplify the boundary condition on the blades. Additionally, the boundary fitted coordinate system is employed in order to express the shape of the blades precisely. Fractional step method is used to solve the basic equations. Third order upwind scheme is chosen for the approximation of the non-linear terms since it can compute the flow field stably even at high Reynolds number without any turbulence models. The flow fields obtained in this study are highly complex due to the three dimensionality and are visualized effectively by using the technique of the computer graphics.

A Wind Turbine Fault Detection Approach Based on Cluster Analysis and Frequent Pattern Mining

  • Elijorde, Frank;Kim, Sungho;Lee, Jaewan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.664-677
    • /
    • 2014
  • Wind energy has proven its viability by the emergence of countless wind turbines around the world which greatly contribute to the increased electrical generating capacity of wind farm operators. These infrastructures are usually deployed in not easily accessible areas; therefore, maintenance routines should be based on a well-guided decision so as to minimize cost. To aid operators prior to the maintenance process, a condition monitoring system should be able to accurately reflect the actual state of the wind turbine and its major components in order to execute specific preventive measures using as little resources as possible. In this paper, we propose a fault detection approach which combines cluster analysis and frequent pattern mining to accurately reflect the deteriorating condition of a wind turbine and to indicate the components that need attention. Using SCADA data, we extracted operational status patterns and developed a rule repository for monitoring wind turbine systems. Results show that the proposed scheme is able to detect the deteriorating condition of a wind turbine as well as to explicitly identify faulty components.