• Title/Summary/Keyword: wind turbine system

Search Result 1,003, Processing Time 0.03 seconds

A Study of the Analysis System of Remote Control a Voltage Fluctuation of a Based Wind Turbine (풍력기반 하이브레드 풍력발전기의 원격 정전압 변동률 분석 장치에 관한 연구)

  • Jang, Mi-Hye;Sun, Mean-Young;Lee, Jong-Jo;Lim, Jae-Kyoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.456-459
    • /
    • 2009
  • we studied a data acquisition and control system of a wind turbine for measuring and controlling a voltage fluctuations of a wind turbine system. The wind turbine system is installed out control area. So, it is so important for supervising to wind turbine of a maintenance, wind speed, optical resources wind turbine output, wind speed, wind direction, over voltage of a generator. This system can be supplied a data of over voltage, under voltage, voltage fluctuations of a wind turbine for controlling an EMS : Energy Management System or a SCADA : Supervision Control and Data Acquisition at a constitute of a wind farm. The of voltage fluctuation system of a wind turbine is improving an electric power supply power quality of a distribution line and unspecified individuals of used wind turbine.

  • PDF

Verification of The Variable-Speed Wind Turbine Control System by Using the Simulator (시뮬레이터를 이용한 가변속 풍력발전기 제어시스템 검증)

  • Cha, Sam-Gon;Han, Sang-Yul;Cha, Jong-Hwan;Choi, Won-Ho;Lee, Seung-Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.370-373
    • /
    • 2007
  • For the development of wind turbine, generally simulator is used. Simulator include wind turbine components. e.g blades, pitch and pitching method, rotor, yaw system, tower, drive train and so on. Few the more, it include a external circumstance. e.g wind speed, wind direction, air density. these basic parameters be used for the control of wind turbine by wind turbine controller in wind turbine simulator. The wind turbine controller can be designed in the wind turbine simulator. But a developer must make the real control system that will be made using PLC or PC or other processor. The developer must verify the function of control system. that is control algorithm , I/O function, communication, sequence and so on. This verification is possible if we substitute the real wind turbine control system for wind turbine controller in the simulator.

  • PDF

Demonstration of 10kw Wind Turbine System at the King Sejong Station (극한환경에서의 소형풍력발전 실증운전)

  • Kim, Seok-Woo;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.25-30
    • /
    • 2006
  • 10kW wind turbine has been successfully commissioned at the King Sejong station in April, 2006. The wind turbine installed is a part of the R&D program for developing a solid wind/diesel hybrid power control system for a remote area such as Antarctica. At the same time, the current research aims to develop an anti-icing and de-icing technologies for a small wind turbine rated under 50kW. Since its commissioning, the turbine has generated about 500kWh for 47days without any system faults. Although sufficient data have not been obtained yet, any trouble has not occurred in the wind/diesel hybrid system based on the current analysis. Concerning on the environmental impact by the wind turbine operation, the turbine is installed within the station boundary in order to meet the Madrid protocol. Therefore, wind turbine operation meets the international requirements for preservation of antarctic ecosystem.

Development of a Cross-flow Type Vertical Wind Power Generation System for Electric Energy Generation Using Convergent-Divergent Duct (축소-확대 유로에 적용한 횡류형 수직 풍력발전시스템의 개발)

  • Chung, Sang-Hoon;Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.543-548
    • /
    • 2011
  • New concept of wind energy conversion system is proposed to increase the energy density at a given working space. The quality of wind for wind power generation is depend on its direction and speed. However, the quality is not good on land because wind direction is changeable all the time and the speed as well. The most popularly operated wind turbine system is an axial-flow free turbine. But its conversion efficiency is less than 30% and even less than 20% considering the operating time. In this research, a cross-flow type wind turbine system is proposed with a convergent-divergent duct system to accelerate the low speed wind at the inlet of the wind turbine. Inlet guide vane is also introduced to the wind turbine system to have continuous power generation under the change of wind direction. In here, the availability of wind energy generation is evaluated with the change of the size of the inlet guide vane and the optimum geometry of the turbine impeller blade was found for the innovative wind power generation system.

Simulation for Pitch Angle Control Strategies of a Grid-Connected Wind Turbine System on MATLAB/Simulink

  • Ro, Kyoung-Soo;Choi, Joon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • This paper presents a pitch angle controller of a grid-connected wind turbine system for extracting maximum power from wind and implements a modeling and simulation of the wind turbine system on MATLAB/Simulink. It discusses the maximum power control algorithm for the wind turbine and presents, in a graphical form, the relationship of wind turbine output, rotor speed, and power coefficient with wind speed when the wind turbine is operated under the maximum power control algorithm. The objective of pitch angle control is to extract maximum power from wind and is achieved by regulating the blade pitch angle during above-rated wind speeds in order to bypass excessive energy in the wind. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction during above-rated wind speeds and effectiveness of the proposed controller would be satisfactory.

A Study on the Mechanical loads Monitoring System of a 750kW Wind Turbine (750kW급 풍력발전기의 부하 모니터링 시스템에 관한 연구)

  • Nam, Yun-Soo;Jang, Hu-Yeong;Yun, Tae-Jun
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.63-69
    • /
    • 2008
  • The exact load measurements for the mechanical parts of wind turbine are important step both for evaluation of specific wind turbine design and for a certification process. A wind turbine monitoring system is essential equipment for mechanical load analysis of a wind turbine. This monitoring system is based on IEC 61400-13 and strain gage are used to measure a mechanical load of wind turbine. Also this system monitors signals from a meteorological mast. The measured signals which are sampled at 200 Hz are automatically saved on a data file in the unit of ten minutes. A detail explanation for the developed wind turbine monitoring system is presented in this study.

  • PDF

Performance Monitoring and Load Analysis of Wind Turbine (풍력발전기의 성능 모니터링 및 하중분석)

  • Bae, Jae-Sung;Kim, Sung-One;Youn, Joung-Eun;Kyung, Nam-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.385-389
    • /
    • 2004
  • Test facilities for the wind turbine performance monitoring and mechanical load measurements are installed in Vestas 100 kW wind turbine in Wollyong test site, Jeju island. The monitoring system consists of Garrad-Hassan T-MON system, telemetry system for blade load measurement, various sensors such as anemometer, wind vane, strain gauge, power meter, and etc. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the established monitoring system, the wind turbine is remotely monitored. From the measured load data, the load analysis has been performed to obtain the load power spectral density and the fatigue load spectra of the wind turbine.

  • PDF

A Study on the Assessment of Operational Capacity Limit of Wind Turbine for the Frequency Stability of Jeiu Island System (제주계통 단독운전 시 주파수 안정도 유지를 위한 풍력발전 운전용량 산정 방법에 관한 연구)

  • Hwang, Kyo-Ik;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • As the Kyoto Protocol, which aims at reducing greenhouse gases in accordance to the UNFCCC, came into force, research on environment friendly energy resources has been a matter of concern worldwide. As a general power generation system, among renewable energy resources, that is interconnected and operated with power system, the wind turbine is emerging as an effective alternative. Since power capacity of the wind turbine has been steadily increasing and its relative importance is also increasing in total facility capacity, we cannot ignore its effect. Because controlling generation output in the wind turbine is not as easy as in the synchronous machine due to its facility characteristics and it generates irregular output fluctuations when interconnected with power system, system interconnection was difficult. But the effect of large capacity wind turbine on isolated power system like Jeju island is serious problem on the frequency stability. Accordingly, it is necessary to analyze the effects of wind turbine on system interconnection and assess the optimum capacity of wind turbine that satisfies the most important principle of stable power supply. This paper have analyzed the effects of wind turbine capacity increases on the system and suggested the method of the capacity to achieve its steady operation. And It is applied to the Jeju island.

Ride-through of PMSG Wind Power System Under the Distorted and Unbalanced Grid Voltage Dips

  • Sim, Jun-Bo;Kim, Ki-Cheol;Son, Rak-Won;Oh, Joong-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.898-904
    • /
    • 2012
  • This paper presents a ride-through skill of PMSG wind turbine system under the distorted and unbalanced grid voltage dips. When voltage dips occur in the grid, pitch control and generator speed control as well as a parallel resistor of DC-link help to keep the turbine's safety. Modern grid code requires a wind turbine to supply reactive currents to help voltage recovery after grid faults clearance. In order to supply reactive currents to the grid in case of the distortedly unbalanced grid voltage dips, a special PLL is needed to control the grid side converter and to regulate the grid voltages symmetrically. The proposed method is applied to 2MW multi-pole PMSG wind turbine system, and verified by simulation.

Wind-lens turbine design for low wind speed

  • Takeyeldein, Mohamed M.;Ishak, I.S.;Lazim, Tholudin M.
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.147-155
    • /
    • 2022
  • This research proposes a wind-lens turbine design that can startup and operate at a low wind speed (< 5m/s). The performance of the wind-lens turbine was investigated using CFD and wind tunnel testing. The wind-lens turbine consists of a 3-bladed horizontal axis wind turbine with a diameter of 0.6m and a diffuser-shaped shroud that uses the suction side of the thin airfoil SD2030 as a cross-section profile. The performance of the 3-bladed wind-lens turbine was then compared to the two-bladed rotor configuration while keeping the blade geometry the same. The 3-bladed wind-lens turbine successfully startup at 1m/s and produced a torque of 66% higher than the bare turbine, while the two-bladed wind-lens turbine startup at less than 4m/s and produced a torque of 186 % higher than the two-bladed bare turbine at the design point. Findings testify that adding the wind-lens could improve the bare turbine's performance at low wind speed.