• Title/Summary/Keyword: wind tower

Search Result 563, Processing Time 0.023 seconds

Effect of soil-structure interaction on the reliability of hyperbolic cooling towers

  • Liao, Wen;Lu, Wenda;Liu, Renhuai
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.217-224
    • /
    • 1999
  • A semi-stochastic process model of reliability was established for hyperbolic cooling towers subjected to combined loadings of wind force, self-weight, temperature loading. Effect of the soil-structure interaction on reliability was evaluated. By involving the gust factor, an equivalent static scheme was employed to convert the dynamic model to static model. The TR combination rule was used to consider relations between load responses. An analysis example was made on the 90M cooling tower of Maoming, Guangdong of China. Numerical results show that the design not including interaction turns to be conservative.

A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation - (가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 -)

  • Jang, Suk-Han;Kim, Hee-Kwang;Lee, Kang-Hyeon;Han, Kyung-Soo;Ham, Bang-Wook;Chung, Ki-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.

Overvoltage Analysis and Air Clearance Design of 345kV/154kV Transmission Tower (345kV/154kV 계통 과전압 해석과 공기절연간격 산정)

  • Shim, E.B.;Woo, J.W.;Kwak, J.S.;Yoon, S.H.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.449-451
    • /
    • 2001
  • This paper described the switching overvoltage analysis on the 345kV and 154kV transmission system by EMTP(Electromagnetic transient Program) for the enactment of current insulation design standards of KEPCO. The air clearance design of current transmission tower was reviewed and revised by the calculated result, considering swing angle for the each type of insulator string by the wind velocity.

  • PDF

Shenzhen Rural Commercial Bank Headquarters: an Iconic Tower Defined by the Integration of Architecture, Structure and Sustainability Goals

  • Besjak, Charles;Thewis, Alexandra
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.31-39
    • /
    • 2022
  • The seamless integration of the architecture and structure of a tall building plays a key role in establishing a recognizable and iconic design. The structural system developed for Shenzhen Rural Commercial Bank Headquarters (SRCBH) utilizes enhanced structural innovations unique to the tower's geometry to improve structural and sustainability performance. SRCBH utilizes a steel diagrid system pulled outside of the enclosure line with diaphragm forces resolved primarily by corner diagonal beams. During the design process the structural systems underwent performance based design and optimization for wind and seismic loading. Resiliency was prioritized for structural design as well as fire resistance. More closely integrating the structure of a building with its architecture and sustainability goals can lead to unique and innovative towers with a timeless expression.

Study on the Local Weather Characteristics using Observation Data at the Boseong Tall Tower (보성 종합기상탑 자료를 활용한 국지기상 특성 연구)

  • Hwang, Sung Eun;Lee, Young Tae;Shin, Seung Sook;Kim, Ki Hoon
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.459-468
    • /
    • 2020
  • In this study, the selection criteria for the occurrence of sea breezes in the Boseong area during the spring season (March-May) of 2016-2017 were prepared for the analysis of vertical weather characteristics. For this purpose, wind speed values were determined using the measured precipitation, cloud volume, wind direction, the difference between the ground and sea temperature, a wind Profiler at an altitude of 1 km, and numerical model data. The dates of the sea breezes in Boseong were classified according to the selection criteria, and the spatial and temporal characteristics of the sea breezes were identified by analyzing the time and altitude of the sea breeze and the size of the wind speed. Sea breezes occurred 23 out of 183 days (12%), and in Boseong, at least 1.2 out of 10 spring days exhibited sea breezes. Sea winds ranged from 1200 to 1800 LST, mainly from ground to 700 m altitude during the day. In addition, the maximum wind speed averaged 4.9 m s-1, at an altitude of 40 m at 1600 LST, showing relatively lower values than those in a preceding study. This seems to be owing to the reduction in wind speed due to the complexity of the coastal terrain.

Correlation analysis of the wind of a cable-stayed bridge based on field monitoring

  • Li, Hui;Laima, Shujin;Li, Na;Ou, Jinping;Duan, Zhondong
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.529-556
    • /
    • 2010
  • This paper investigates the correlation of wind characteristics monitored on a cable-stayed bridge. Total five anemoscopes are implemented into the bridge. Two out of 5 anemoscopes in inflow and two out of 5 anemoscopes in wake-flow along the longitudinal direction of the bridge are installed. Four anemoscopes are respectively distributed at two cross-sections. Another anemoscope is installed at the top of the tower. The correlation of mean wind speed and direction, power spectral density, the turbulent intensity and integral length of wind in flow at two cross-sections are investigated. In addition, considering the non-stationary characteristics of wind, the spatial correlation in time-frequency is analyzed using wavelet transform and different phenomenon from those obtained through FFT is observed. The time-frequency analysis further indicates that intermittence, coherence structures and self-similar structures are distinctly observed from fluctuant wind. The flow characteristics around the bridge deck at two positions are also investigated using the field measurement. The results indicate that the mean wind speed decrease when the flow passing through the deck, but the turbulence intensity become much larger and the turbulence integral lengths become much smaller compared with those of inflow. The relationship of RMS (root mean square) of wake-flow and the mean wind speed of inflow is approximately linear. The special structures of wake-flow in time-frequency domain are also analyzed using wavelet transform, which aids to reveal the forming process of wake-flow.

Bora wind characteristics for engineering applications

  • Lepri, Petra;Vecenaj, Zeljko;Kozmar, Hrvoje;Grisogono, Branko
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.579-611
    • /
    • 2017
  • Bora is a strong, usually dry temporally and spatially transient wind that is common at the eastern Adriatic Coast and many other dynamically similar regions around the world. One of the Bora main characteristics is its gustiness, when wind velocities can reach up to five times the mean velocity. Bora often creates significant problems to traffic, structures and human life in general. In this study, Bora velocity and near-ground turbulence are studied using the results of three-level high-frequency Bora field measurements carried out on a meteorological tower near the city of Split, Croatia. These measurements are analyzed for a period from April 2010 until June 2011. This rather long period allows for making quite robust and reliable conclusions. The focus is on mean Bora velocity, turbulence intensity, Reynolds shear stress and turbulence length scale profiles, as well as on Bora velocity power spectra and thermal stratification. The results are compared with commonly used empirical laws and recommendations provided in the ESDU 85020 wind engineering standard to question its applicability to Bora. The obtained results report some interesting findings. In particular, the empirical power- and logarithmic laws proved to fit mean Bora velocity profiles well. With decreasing Bora velocity there is an increase in the power-law exponent and aerodynamic surface roughness length, and simultaneously a decrease in friction velocity. This indicates an urban-like velocity profile for smaller wind velocities and a rural-like velocity profile for larger wind velocities. Bora proved to be near-neutral thermally stratified. Turbulence intensity and lateral component of turbulence length scales agree well with ESDU 85020 for this particular terrain type. Longitudinal and vertical turbulence length scales, Reynolds shear stress and velocity power spectra differ considerably from ESDU 85020. This may have significant implications on calculations of Bora wind loads on structures.

Wind spectral characteristics on fatigue responses of towerbase and moorings of a floating offshore wind turbine

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.191-218
    • /
    • 2019
  • The tower-platform interface and mooring system of floating offshore wind turbines (FOWTs) are some of the most critical components with significant influences on overall project costs. In addition to satisfying strength requirements, it is typical and vital to meet fatigue criteria for a service life of 25 years or more. Wind spectra characteristics considered in analysis can penalize fatigue designs, leading to unnecessary costs. The International Electrotechnical Commission (IEC, 2009) recommends the use of site-specific wind data (spectrum, turbulence intensity, etc.) in design of FOWTs, but for offshore sites it is often the case that such data is unavailable and land-based data are used as surrogates in design. For such scenarios, it is worth investigating whether such alternative approach is suitable and accurate, and understanding the consequence of the selection of wind spectral characteristics on fatigue design. This paper addresses the impact of the subsequent selection on fatigue responses of towerbase and mooring system in a FOWT, as a sequel to the paper by Udoh and Zou (2018) which focused on impacts on strength design. The 5 MW semi-submersible FOWT platform with six mooring lines implemented in the preceding study is applied in analysis. Results indicate significant variations in resulting fatigue life with considered wind parameters. Thus, it is critical to apply proper wind spectra characteristics for analysis and design of FOWTs to avoid unnecessary conservatism and costs. Based on the findings of this study, more explicit guidance on the application of turbulence intensities for IEC-recommended models in offshore sites could lead to more accurate load estimates in design of FOWTs.

Application of Sliding Mode fuzzy Control with Disturbance Prediction (외란 예측기가 포함된 슬라이딩 모드 퍼지 제어기의 응용)

  • 김상범;윤정방;구자인
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.365-370
    • /
    • 2000
  • A sliding mode fuzzy control (SMFC) algorithm is applied to design a controller for a benchmark problem on a wind- excited building. The structure is a 76-story concrete office tower with a height of 306 meters, hence the wind resistance characteristics are very important for the serviceability as well as the safety. A control system with an active tuned mass damper is assumed to be installed on the top floor. Since the structural acceleration is measured only at ,limited number of locations without measurement of the wind force, the structure of the conventional continuous sliding mode control may have the feed-back loop only. So, an adaptive least mean squares (LMS) filter is employed in the SMFC algorithm to generate a fictitious feed-forward loop. The adaptive LMS filter is designed based on the information of the stochastic characteristics of the wind velocity along the structure. A numerical study is carried out. and the performance of the present SMFC with the ,adaptive LMS filter is investigated in comparison with those of' other control, of algorithms such as linear quadratic Gaussian control, frequency domain optimal control, quadratic stability control, continuous sliding mode control, and H/sub ∞///sub μ/, control, which were reported by other researchers. The effectiveness of the adaptive LMS filter is also examined. The results indicate that the present algorithm is very efficient .

  • PDF

Earthquake Response Analysis of an Offshore Wind Turbine Considering Effects of Geometric Nonlinearity of a Structure and Drag Force of Sea Water (기하 비선형과 항력 효과를 고려한 해상풍력발전기의 지진 응답해석)

  • Lee, Jin Ho;Bae, Kyung Tae;Jin, Byeong Moo;Kim, Jae Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.257-269
    • /
    • 2013
  • In this study, the capability of an existing analysis method for the fluid-structure-soil interaction of an offshore wind turbine is expanded to account for the geometric nonlinearity and sea water drag force. The geometric stiffness is derived to take care of the large displacement due to the deformation of the tower structure and the rotation of the footing foundation utilizing linearized stability analysis theory. Linearizing the term in Morison's equation concerning the drag force, its effects are considered. The developed analysis method is applied to the earthquake response analysis of a 5 MW offshore wind turbine. Parameters which can influence dynamic behaviors of the system are identified and their significance are examined.