• Title/Summary/Keyword: wind pressure distribution

Search Result 295, Processing Time 0.024 seconds

A study on the equivalent static wind load estimation of large span roofs (대스팬 지붕구조물의 등가정적 풍하중 산정에 관한 연구)

  • Kim, Dae-Young;Kim, Ji-Young;Kim, Han-Young;Lee, Myung-Ho;Kim, Sang-Dae
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.245-251
    • /
    • 2004
  • This paper discuss the conditionally sampled actual wind pressure distributions causing peak quasi-static wind loads in the large span roofs using the wind pressures at many locations on dome models measured simultaneously in a wind tunnel. The actual extreme pressure distributions are compared itk load-response-correlation (LRC) method and the quasi-steady pressure distributions. Based on the results, the reason for the discrepancy in the LRC pressure distribution and the actual extreme pressure distribution are discussed. Futhermore, a brief discussion is made of the equivalent static wind load estimation for the large span roofs.

  • PDF

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

Characteristics of wind loading on internal surface and its effect on wind-induced responses of a super-large natural-draught cooling tower

  • Zou, Yun-feng;Fu, Zheng-yi;He, Xu-hui;Jing, Hai-quan;Li, Ling-yao;Niu, Hua-wei;Chen, Zheng-qing
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.235-246
    • /
    • 2019
  • Wind loading is one of important loadings that should be considered in the design of large hyperbolic natural-draught cooling towers. Both external and internal surfaces of cooling tower are under the action of wind loading for cooling circulating water. In the previous studies, the wind loads on the external surface attracted concernedly attention, while the study on the internal surface was relatively ware. In the present study, the wind pressure on the internal surface of a 220 m high cooling tower is measured through wind tunnel testing, and the effect of ventilation rate of the packing layer on internal pressure is a major concern. The characteristics of internal wind pressure distribution and its effect on wind-induced responses calculated by finite element method are investigated. The results indicate that the wind loading on internal surface of the cooling tower behaves remarkable three-dimensional effect, and the pressure coefficient varies along both of height and circumferential directions. The non-uniformity is particularly strong during the construction stage. Analysis results of the effect of internal pressure on wind-induced responses show that the size and distribution characteristics of internal pressure will have some influence on wind-induced response, however, the outer pressure plays a dominant role in the wind-induced response of cooling tower, and the contribution of internal pressure to the response is small.

A study of aerodynamic pressures on elevated houses

  • Abdelfatah, Nourhan;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.335-350
    • /
    • 2020
  • In coastal residential communities, especially along the coastline, flooding is a frequent natural hazard that impacts the area. To reduce the adverse effects of flooding, it is recommended to elevate coastal buildings to a certain safe level. However, post storm damage assessment has revealed severe damages sustained by elevated buildings' components such as roofs, walls, and floors. By elevating a structure and creating air gap underneath the floor, the wind velocity increases and the aerodynamics change. This results in varying wind loading and pressure distribution that are different from their slab on grade counterparts. To fill the current knowledge gap, a large-scale aerodynamic wind testing was conducted at the Wall of Wind experimental facility to evaluate the wind pressure distribution over the surfaces of a low-rise gable roof single-story elevated house. The study considered three different stilt heights. This paper presents the observed changes in local and area averaged peak pressure coefficients for the building surfaces of the studied cases. The aerodynamics of the elevated structures are explained. Comparisons are done with ASCE 7-16 and AS/NZS 1170.2 wind loading standards. For the floor surface, the study suggests a wind pressure zoning and pressure coefficients for each stilt height.

Pressure distribution on rectangular buildings with changes in aspect ratio and wind direction

  • Lee, Young Tae;Boo, Soo Ii;Lim, Hee Chang;Misutani, Kunio
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.465-483
    • /
    • 2016
  • This study aims to enhance the understanding of the surface pressure distribution around rectangular bodies, by considering aspects such as the suction pressure at the leading edge on the top and side faces when the body aspect ratio and wind direction are changed. We carried out wind tunnel measurements and numerical simulations of flow around a series of rectangular bodies (a cube and two rectangular bodies) that were placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equations with the typical two-equation model (i.e., the standard $k-{\varepsilon}$ model) were solved, and the results were compared with the wind tunnel measurement data. Regarding the turbulence model, the results of the $k-{\varepsilon}$ model are in overall agreement with the experimental results, including the existing data. However, because of the blockage effects in the computational domain, the pressure recovery region is underpredicted compared to the experimental data. In addition, the $k-{\varepsilon}$ model sometimes will fail to capture the exact flow features. The primary emphasis in this study is on the flow characteristics around rectangular bodies with various aspect ratios and approaching wind directions. The aspect ratio and wind direction influence the type of wake that is generated and ultimately the structural loading and pressure, and in particular, the structural excitation. The results show that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and side faces of the cube. In addition, the transverse width has a substantial effect on the variations in surface pressure around the bodies, while the longitudinal length has less influence compared to the transverse width.

Analysis on the Yeongdong Downslope Windstorms Generation Condition Verified by Observation Cases (관측사례로 검증한 영동강풍 발생조건 분석)

  • Park, Yu-Jung;Han, Youn-Deok
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.405-420
    • /
    • 2021
  • Forest fire happens every year at Yeongdong, Gangwon-do, due to the strong local wind during the spring time and it causes a huge damage. This wind is named "Yangganjipung" or "Yanggangjipung" that blows along Yeongdong. However, the occurrence conditions of the wind have been still unclear. To identify the occurrence mechanism of local strong wind through three-dimensional observation data, Gangwon Regional Meteorological Administration performed Joint Gangwon-Yeongdong 3D Observation Project in 2020. The special observation was carried out for 6 times from March to April. The observation data was analyzed by focusing on the structure of synoptic pressure distribution and inversion layer. The result showed that the strength of wind is different depending on the latitude of low pressure, intensity of inversion layer, and changes on height in the south-high and north-low pressure distribution. As the interval of the upper and lower parts of the inversion layer was narrow, the strength of the wind became stronger, which is one of the observational characteristics of the springtime wind pattern at Yeongdong, Gangwon-do. In future, the clear mechanism of the local wind in the Yeongdong during the spring time is expected to be verified based on the accumulative observation data and close analysis.

A Study of Performance Estimate and Flow Analysis of the 500 kW Horizontal-Axis Wind Turbine by CFD (CFD에 의한 500kW급 수평축 풍력발전용 터빈의 성능평가 및 유동해석에 관한 연구)

  • Kim, Y.T.;Kim, B.S.;Kim, J.H.;Nam, C.D.;Lee, Y.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.32-39
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine the complex 3-D stall phenomena on the rotor blade and wake distribution of the wind turbine. The flow characteristics of 500kW Horizontal Axis Wind Turbine (HAWT) are compared with the calculated 3-D stall phenomena and wake distribution. We used the CFX-TASCflow to predict flow and power characteristics of the wind turbine. The CFD results are somewhat consistent with the BEM (Blade Element Momentum) results. And, the rotational speed becomes faster, the 3-D stall region becomes smaller. Moreover, the pressure distribution on the pressure side that directly gets the incoming wind grows high as it goes toward the tip of the blade. The pressure distribution on the blade's suction side tells us that the pressure becomes low in the leading edge of the airfoil as it moves from the hub to the tip. However, we are not able to precisely predict on the power coefficient of the rotor blade at the position of generating complex 3-D stall region.

A Study on the Characteristics of Pressure Distribution for Heat Exchanger Types of Domestic Gas Boiler (가정용 가스보일러 열교환기 유형에 따른 압력분포특성에 관한 연구)

  • 최경석;오율권;차경옥
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.22-28
    • /
    • 2001
  • Heat transfer and pressure distribution for heat exchanger type of domestic gas boiler are different from shape, pitch, thickness of fin and array of pipe respectively. In order to measure the pressure distribution across the heat exchanger, a suction type wind tunnel was constructed and velocity distribution was measured for pilot tube(4 point) of rack type. The experiments were performed for 5 different air flow mass, rpm=3,6,9,12,15 and transverse axis of heat exchanger(x-length) is 5cm respectively. Results showed that above 9.5m/s, pressure distribution dispersion for wet type of heat exchanger is on the increase and above 5.5m/s, pressure distribution dispersion for dry type of heat exchanger is on the increase. Also, pressure distribution dispersion by comparing two different types heat exchanger, dry type of heat exchanger showed a higher augmentation than wet type of heat exchanger.

  • PDF

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.

A Proposal of the Wind Pressure Coefficient and Simplified Wind Load Estimating Formula for the Design of Structural Frames of the Low-Rise Buildings (저층건축물의 구조골조 설계용 풍압계수 및 풍하중 평가 약산식의 제안)

  • Park, Jae Hyeong;Chung, Yung Bea;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.289-299
    • /
    • 2009
  • This study summarizes basic results on the characteristics of mean wind pressure distribution on rectangular low-rise buildings with various breadths and depths through simultaneous multi-point wind pressure test. 5 types of rectangular wind pressure test models with various breadths and depths have been made for this study. Wind pressure tests are conducted on the Boundary Layer Wind Tunnel at Kumoh National Institute of Technology. The characteristics of mean wind pressure distribution with respect to various breadths and depths of low-rise buildings are analyzed into windward face, leeward face and side faces of building. From the results, new wind pressure coefficients and simplified wind load estimating formula for the resonable design of the structural frames of low-rise building were proposed.