• Title/Summary/Keyword: wind energy conversion system

Search Result 112, Processing Time 0.032 seconds

Application Feasibility Analysis of STATCOM for Wind Power System with Induction Generator (유도발전기식 풍력발전시스템의 STATCOM 적용 타당성 분석)

  • 한병문;이범규;전영수;이광열
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.6
    • /
    • pp.309-315
    • /
    • 2004
  • The wind power is known as the most promising future energy source to obtain the electricity Induction generator is a simple energy conversion unit in the wind power generation system but it consumes the reactive power from the interconnected power system. Switched capacitor banks are normally used to compensate the reactive power, which bring about the transient overvoltage. This paper proposes a method for compensating the reactive power with STATCOM. A detail simulation model for analyzing the interaction between the wind power system and the commercial power system was developed using EMTDC software. The developed simulation model can be effectively utilized to plan the reactive power compensation for newly designed wind power system.

An Optimal Maximum Power Point Tracking Algorithm for Wind Energy System in Microgrid

  • Nguyen, Thanh-Van;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.382-383
    • /
    • 2018
  • To increase the efficiency of a wind energy conversion system (WECS), the maximum power point tracking (MPPT) algorithm is usually employed. This paper proposes an optimal MPPT algorithm which tracks a sudden wind speed change condition fast. The proposed method can be implemented without the prior information on the wind turbine parameters, generator parameters, air density or wind speed. By investigating the directions of changes of the mechanical output power in wind turbine and rotor speed of the generator, the proposed MPPT algorithm is able to determine an optimal speed to achieve the maximum power point. Then, this optimal speed is set to the reference of the speed control loop. As a result, the proposed MPPT algorithm forces the system to operate at the maximum power point by using a three-phase converter. The simulation results based on the PSIM are given to prove the effectiveness of the proposed method.

  • PDF

Optimization of Battery Storage Capacity with Min-Max Power Dispatching Method for Wind Farms

  • Nguyen, Cong-Long;Kim, Hyung-Jun;Lee, Tay-Seek;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.238-239
    • /
    • 2013
  • It is a crucial requirement to utilize an economical battery capacity for the wind energy conversion system. In this paper, the optimal BESS capacity is determined for the wind farm whose dispatched power is assigned by the min-max dispatching method. Based on a lifetime cost function that indicates the BESS cost spent to dispatch 1kWh wind energy into grid, the battery capacity can be optimized so as to obtain the minimum system operation cost. Moreover, the battery state of charge (SOC) is also managed to be in a safe operating range to ensure the system undamaged. In order to clarify the proposed optimizing method, a 3MW permanent magnet synchronous generator (PMSG) wind turbine model and real wind speed data measured each minute are investigated.

  • PDF

Development of fault diagnostic system for mass unbalance and aerodynamic asymmetry of wind turbine system by using GH-Bladed (GH-Bladed를 이용한 풍력발전기의 질량 불평형 및 공력 비대칭 고장진단 시스템 개발)

  • Kim, Se-Yoon;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.96-101
    • /
    • 2014
  • Wind power is the fastest growing renewable energy source in the world and it is expected to remain so for some times. Recently, there is a constant need for the reduction of Operational and Maintenance(O&M) costs of Wind Energy Conversion Systems(WECS). The most efficient way of reducing O&M cost would be to utilize CMS(Condition Monitoring System) of WECS. CMS allows for early detection of the deterioration of the wind generator's health, facilitating a proactive action, minimizing downtime, and finally maximizing productivity. There are two types of faults such as mass unbalance and aerodynamic asymmetry which are related to wind turbine's rotor faults. Generally, these faults tend to generate various vibrations. Therefore, in this work a simple fault detection algorithm based on spectrums of vibration signals and simple max-min decision logic is proposed. Furthermore, in order to verify its feasibility, several simulation studies are carried out by using GH-bladed software.

Multi-MW Class Wind Turbine Blade Design Part I : Aero-Structure Design and Integrated Load Analysis (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part I : 공력-구조 설계 및 통합하중해석)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.289-309
    • /
    • 2014
  • A rotor blade is an important device that converts kinetic energy of wind into mechanical energy. Rotor blades affect the power performance, energy conversion efficiency, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. This study examined the general blade design procedure for a wind turbine system and aero-structure design results for a 2-MW class wind turbine blade (KR40.1b). As suggested above, a rotor blade cannot be designed independently, because its ultimate and fatigue loads are highly dependent on system operating conditions. Thus, a reference 2-MW wind turbine system was also developed for the system integrated load calculations. All calculations were performed in accordance with IEC 61400-1 and the KR guidelines for wind turbines.

Fluctuating Reduction Method for Generation Power of the Wind-PV Hybrid System

  • Oh, Jin-Seok;Lee, Ji-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.80-85
    • /
    • 2004
  • This paper reports the performance of a CB (Circuit Breaker) and converter for the battery operated Wind-PV (Photovoltaic) system. For this purpose, a fluctuating reduction controller for an electric generation hybrid (wind+PV) system is suggested. The method operates a wind turbine, PV, CB, converter and battery. Integration of wind and PV sources, which are generally complementary, usually reduce the capacity of the battery. Also, CB controls the overvoltage of the generation system. The objective is to control the operation of the converter and the CB and reduce power fluctuation. This paper includes discussion on system performance, power quality, fluctuation and effect of the randomness of the wind.

Voltage Impacts of a Variable Speed Wind Turbine on Distribution Networks

  • Kim, Seul-Ki;Kim, Eung-Sang
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.206-213
    • /
    • 2003
  • The main purpose of this paper is to present a simulation model for assessing the impacts of a variable speed wind turbine (VSWT) on the distribution network and perform a simulation analysis of voltage profiles along the wind turbine installed feeder using the presented model. The modeled wind energy conversion system consists of a fixed pitch wind turbine, a synchronous generator, a rectifier and a voltage source inverter (VSI). Detailed study on the voltage impacts of a variable speed wind turbine is conducted in terms of steady state and dynamic behaviors. Various capacities and different modes of variable speed wind turbines are simulated and investigated. Case studies demonstrate how feeder voltages are influenced by capacity and control modes of wind turbines and changes in wind speed under different network conditions. Modeling and simulation analysis is based on PSCAD/EMTDC a software package.

Design of Nonlinear Controller for Variable Speed Wind Turbines based on Kalman Filter and Artificial Neural Network (칼만필터 및 인공신경망에 기반한 가변속 풍력발전 시스템을 위한 비선형 제어기 설계)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.243-250
    • /
    • 2010
  • As the wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is how to efficiently operate the wind turbines in a wide range of wind speeds. Compared to fixed speed turbines, variable speed wind turbines feature higher energy yields, lower component stress and fewer grid connection power peaks. Generally, measurement of wind speed is required for the control of variable speed wind turbine system. However, wind speed measured by anemometers is not accurate owing to various reasons. In this work, a new control algorithm for variable speed wind turbine system based on Kalman filter which can be used for the estimation of wind speed and artificial neural network which can generate optimum rotor speed is proposed. Also, to verify the feasibility of the proposed scheme, various simulation studies are carried out by using Simulink in Matlab.

Comparison of MPPT Based on Fuzzy Logic Controls for PMSG

  • Putri, Adinda Ihsani;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.285-286
    • /
    • 2011
  • Maximum Power Point Tracker (MPPT) is the big issue in generating power based on Wind Energy Conversion System. In case of unknown turbine characteristic, it is useful to implement MPPT based on fuzzy logic control. This kind of control is able to find the value of duty cycle to meet maximum power point at particular wind speed. There are many methods to develop MPPT based fuzzy logic controls. In this paper, two of the methods are compared both at low and high fluctuating wind speed.

  • PDF