• Title/Summary/Keyword: wind effect index

Search Result 76, Processing Time 0.031 seconds

Connection between the Amplitude Variations of the GPS Radio Occultation Signals and Solar Activity

  • Pavelyev, A.G.;Liou, Y.A.;Wickert, J.;Pavelyev, A.A.
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.348-357
    • /
    • 2008
  • The classification of the effect of ionospheric disturbances on the radio occultation signal amplitude has been introduced based on an analysis of more than 2000 seances of radio occultation measurements per formed with the help of the CHAMP German satellite. The dependence of the histograms of variations in the radio occultation signal amplitude on the IMF variation index has been revealed. It has been indicated that it is possible to introduce the radio occultation index characterizing the relation between ionospheric disturbances and solar activity. An amplitude radio occultation (RO) method is proposed to study connection between the ionospheric and solar activity on a global scale. Sporadic amplitude scintillation observed in RO experiments contain important information concerning the seasonal, geographical, and temporal distributions of the ionospheric disturbances and depend on solar activity. The probability of strong RO amplitude variations (RO $S_4$ index greater than 0.2) in the CHAMP RO signals diminishes sharply with the weakening of solar activity from 2001 to 2008. The general number of RO events with strong amplitude variations can be used as an indicator of the ionospheric activity. We found that during 2001-2008 the daily globally averaged RO $S_{4a}$ index depends essentially on solar activity. The maximum occurred in January 2002, minimum has been observed in summer 2008. Different temporal behavoir of $S_{4a}$ index has been detected for polar (with latitude greater than $60^{\circ}$) and low latitude (moderate and equatorial) regions. For polar regions $S_{4a}$ index is slowly decreasing with solar activity. In the low latitude areas $S_{4a}$ index is sharply oscillating, depending on the solar ultraviolet emission variations. The different geographical behavoir of $S_{4a}$ index indicates different origin of ionospheric plasma disturbances in polar and low latitude areas. Origin of the plasma disturbances in the polar areas may be connected with influence of solar wind, the ultraviolet emission of the Sun may be the main cause of the ionospheric irregularities in the low latitude zone. Therefore, the $S_{4a}$ index of RO signal is important radio physical indicator of solar activity.

  • PDF

Evaluation of the Effect of Traffic Control Program on the Ambient Air Quality in Seoul Metropolitan Area Using the Lower Level Stability Index of Atmosphere (하층대기의 연직 안정도 지표를 이용한 차량 2부제의 수도권 대기오염도 저감효과 분석)

  • Kim C.-H.;Park 1.-S.;Lee S.-J.;Kim J.-S.;Hong Y.-D.;Han J.-S.;Jin H.-A.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.243-257
    • /
    • 2005
  • The effects of Traffic Control Program (TCP) on the ambient urban air quality of SO$_{2}$, NO$_{2}$, O$_{3}$, and PM$_{10}$ were evaluated in Seoul metropolitan area by using the lower atmospheric vertical stability index and daily mean wind speeds. The vertical stability index; temperature lapse rate between 1000 hPa and 850 hPa geopotential height fields, were used to identify daily vertical stability index during the 2002 World Cup period where traffic amount was reportedly reduced to half the number of vehicles. The indicated air quality levels of TCP days were then compared with those of the cases observed with analogous vertical stability during the recent 3 years from 2000 to 2002. The result indicates that the effect of TCP on the primary air pollutants are found to be approximately 39$\%$, 23$\%$ and 20$\%$ lower for SO$_{2}$, NO$_{2}$ and PM$_{10}$, respectively. The secondary air pollutant; ozone, showed relatively smaller decreasing rate (13$\%$) of daily mean concentrations (even increased during the night time). The comparison of daily maximum or peak concentrations reveals that the pronounced decreasing effects of TCP on the ambient air quality for both primary and secondary air pollutants, suggesting that TCP is one of the effective strategies to control peak or higher concentrations for most urban scale air pollutants in and around the Seoul metropolitan area.

Occurrence Characteristics of Marine Accidents Caused by Typhoon around Korean Peninsula

  • Yang, Chan-Su;Kim, Yeon-Gyu;Gong, In-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.64-73
    • /
    • 2004
  • During the period of every summer to early autumn seasons, ships have been wrecked or grounded from effect of a typhoon in the waters around Korean Peninsular. Typhoon Rusa killed more than 100 people in September 2002. Super Typhoon Maemi passed southeast of South Korea in September 12-13, 2003, with gale winds blowing at a record 60 m/s and caused much ship groundings, collisions and sinkings over 3000 in dockyards, harbors and places of refuge. These are things that could have been prevented had there merely been prior warning. The aim of this study is to examine what effect these typhoons had on occurrence characteristics of the maritime accidents in South Korea. In this work, records of marine accidents caused by a typhoon are investigated for the period from 1962 to 2002. The distribution is also compared with the trajectories of typhoons, passed during the 1990-2003. It is shown that attack frequency of typhoon and number of marine accidents is the highest in August. We use the track data of Maemi such as central pressure, maximum sustained wind speed and area of each 15m/s and 25m/s winds as a case study to draw a map as a risk index.

  • PDF

Analysis of the effect of street green structure on PM2.5 in the walk space - Using microclimate simulation - (가로녹지 유형이 보행공간의 초미세먼지에 미치는 영향 분석 - 미기후 시뮬레이션을 활용하여 -)

  • Kim, Shin-Woo;Lee, Dong-Kun;Bae, Chae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.61-75
    • /
    • 2021
  • Roadside greenery in the city is not only a means of reducing fine dust, but also an indispensable element of the city in various aspects such as improvement of urban thermal environment, noise reduction, ecosystem connectivity, and aesthetics. However, in studies dealing with the effect of reducing fine dust through trees in existing urban spaces, microscopic aspects such as the adsorption effect of plants were dealt with, structural changes such as the width of urban buildings and streets, and the presence or absence of trees, Impact studies that reflect the actual form of In this study, the effect of greenery composition applicable to urban space on PM2.5 was simulated through the microclimate epidemiologic model ENVI-met, and field measurements were performed in parallel to verify the results. In addition, by analyzing the results of fine dust background concentration, wind speed, and leaf area index, the sensitivity to major influencing variables was tested. As a result of the study, it was confirmed that the fine dust reduction effect was the highest in the case with a high planting amount, and the reduction effect was the greatest at a low background concentration. Based on this, the cost of planting street green areas and the effect of reducing PM2.5 were compared. The results of this study can contribute as a basis for considering the effect of pedestrian space on air quality when planning and designing street green spaces.

Evaluation of the Wet Bulb Globe Temperature (WBGT) Index for Digital Fashion Application in Outdoor Environments

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.23-36
    • /
    • 2017
  • Objective: This paper presents a study to evaluate the WBGT index for assessing the effects of a wide range of outdoor weather conditions on human responses. Background: The Wet Bulb Globe Temperature (WBGT) index was firstly developed for the assessment of hot outdoor conditions. It is a recognised index that is used world-wide. It may be useful over a range of outdoor conditions and not just for hot climates. Method: Four group experiments, involving people performing a light stepping activity, were conducted to determine human responses to outside conditions in the U.K. They were conducted in September 2007 (autumn), December 2007 (winter), March 2008 (spring) and June 2008 (summer). Environmental measurements included WBGT, air temperature, radiant temperature (including solar load), humidity and wind speed all measured at 1.2m above the ground, as well as weather data measured by a standard weather station at 3m to 4m above the ground. Participants' physiological and subjective responses were measured. When the overall results of the four seasons are considered, WBGT provided a strong prediction of physiological responses as well as subjective responses if aural temperature, heart rate and sweat production were measured. Results: WBGT is appropriate to predict thermal strain on a large group of ordinary people in moderate conditions. Consideration should be given to include the WBGT index in warning systems for a wide range of weather conditions. However, the WBGT overestimated physiological responses of subjects. In addition, tenfold Borg's RPE was significantly different with heart rate measured for the four conditions except autumn (p<0.05). Physiological and subjective responses over 60 minutes consistently showed a similar tendency in the relationships with the $WBGT_{head}$ and $WBGT_{abdomen}$. Conclusion: It was found that either $WBGT_{head}$ or $WBGT_{abdomen}$ could be measured if a measurement should be conducted at only one height. The relationship between the WBGT values and weather station data was also investigated. There was a significant relationship between WBGT values at the position of a person and weather station data. For UK daytime weather conditions ranging from an average air temperature of $6^{\circ}C$ to $21^{\circ}C$ with mean radiant temperatures of up to $57^{\circ}C$, the WBGT index could be used as a simple thermal index to indicate the effects of weather on people. Application: The result of evaluation of WBGT might help to develop the smart clothing for workers in industrial sites and improve the work environment in terms of considering workers' wellness.

Prediction of spatio-temporal AQI data

  • KyeongEun Kim;MiRu Ma;KyeongWon Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.119-133
    • /
    • 2023
  • With the rapid growth of the economy and fossil fuel consumption, the concentration of air pollutants has increased significantly and the air pollution problem is no longer limited to small areas. We conduct statistical analysis with the actual data related to air quality that covers the entire of South Korea using R and Python. Some factors such as SO2, CO, O3, NO2, PM10, precipitation, wind speed, wind direction, vapor pressure, local pressure, sea level pressure, temperature, humidity, and others are used as covariates. The main goal of this paper is to predict air quality index (AQI) spatio-temporal data. The observations of spatio-temporal big datasets like AQI data are correlated both spatially and temporally, and computation of the prediction or forecasting with dependence structure is often infeasible. As such, the likelihood function based on the spatio-temporal model may be complicated and some special modelings are useful for statistically reliable predictions. In this paper, we propose several methods for this big spatio-temporal AQI data. First, random effects with spatio-temporal basis functions model, a classical statistical analysis, is proposed. Next, neural networks model, a deep learning method based on artificial neural networks, is applied. Finally, random forest model, a machine learning method that is closer to computational science, will be introduced. Then we compare the forecasting performance of each other in terms of predictive diagnostics. As a result of the analysis, all three methods predicted the normal level of PM2.5 well, but the performance seems to be poor at the extreme value.

Effects for the Thermal Comfort Index Improvement of Park Woodlands and Lawns in Summer (여름철 공원 수림지와 잔디밭의 온열쾌적지수 개선 효과)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.6
    • /
    • pp.21-30
    • /
    • 2014
  • The purpose of this study was to evaluate human thermal comfort in summer by the type of greenery in parks and to explore planning solutions to supply a comfortable thermal environment in parks. The research was conducted in three different land cover types: a park with multi-wide-canopied trees(WOODLAND), park with grass(LAWN) and park with pavement(PAV) as reference sites in Hamyang-Gun SangrimPark. Field measurements of air temperature, relative humidity and wind velocity, short-wave and long-wave radiation from six directions(east, west, north, south, upward and downward) were carried out in the summer of 2014(August 21-23 and 29-30). Mean Radiant Temperature($T_{mrt}$) absorbed by a human-biometeorological reference person was estimated from integral radiation and the calculation of angular factors. The thermal comfort index PET was calculated by Rayman software, UTCI, OUT_SET$^*$ were calculated using the UTCI Calculator and the Thermal Comfort Calculator of Richard DeDear. The results showed that the WOODLAND has the maximum cooling effect during daytime, reduced air temperatures/$T_{mrt}$ by up to $5.9^{\circ}C/35^{\circ}C$ compared to PAV and lowered heat stress values despite increasing relative humidity values and decreasing wind velocity. While the LAWN had very slight cooling effects during daytime, reduced air temperatures/$T_{mrt}$ by up to $0.9^{\circ}C/3^{\circ}C$ compared to PAV, the improvement effects of the thermal comfort index was very slight. However, during nighttime the microclimatic and radiant conditions of WOODLAND, LAWN, and PAV were similar owing to the absence of solar radiation, reduction of wind velocity and an increase in relative humidity. Because the shading and evapotranspiration effects of the WOODLAND were much greater than the evapotranspiration effects of the LAWN, it can be said that the solutions for supplying comfortable thermal environment in parks are to amplify the green volumes rather than green areas. This study was undertaken to evaluate the human thermal comfort in summer of WOODLAND/LAWN parks and to determine the improvement effects of thermal comfort index. These results can contribute to the provision better thermal comfort for park users during park planning.

Effect of the Learning Image Combinations and Weather Parameters in the PM Estimation from CCTV Images (CCTV 영상으로부터 미세먼지 추정에서 학습영상조합, 기상변수 적용이 결과에 미치는 영향)

  • Won, Taeyeon;Eo, Yang Dam;Sung, Hong ki;Chong, Kyu soo;Youn, Junhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.573-581
    • /
    • 2020
  • Using CCTV images and weather parameters, a method for estimating PM (Particulate Matter) index was proposed, and an experiment was conducted. For CCTV images, we proposed a method of estimating the PM index by applying a deep learning technique based on a CNN (Convolutional Neural Network) with ROI(Region Of Interest) image including a specific spot and an full area image. In addition, after combining the predicted result values by deep learning with the two weather parameters of humidity and wind speed, a post-processing experiment was also conducted to calculate the modified PM index using the learned regression model. As a result of the experiment, the estimated value of the PM index from the CCTV image was R2(R-Squared) 0.58~0.89, and the result of learning the ROI image and the full area image with the measuring device was the best. The result of post-processing using weather parameters did not always show improvement in accuracy in all cases in the experimental area.

Analysis on the Effects of Building Coverage Ratio and Floor Space Index on Urban Climate (도시의 건폐율 및 용적률이 도시기후에 미치는 영향 분석)

  • Yeo, In-Ae;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.19-27
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate were analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1) The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. According to the building height, the highest temperature was increased by $2.1^{\circ}C$ from 2-story to 5-story building and the absolute humidity by 2.1g/kg maximum and the wind velocity by 1.0m/s was decreased from 2-story to 20-story building. (2) Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature. In the last, deriving the combination of building coverage and building height is needed to obtain effectiveness of the urban built environment planning at the point of the urban climate. These simulation results need to be constructed as DB which shows urban quantitative thermal characters by the urban physical structure. These can be quantitative base for suggesting combinations of the building and urban planning features at the point of the desirable urban thermal environment as well as analyzing urban climate phenomenon.

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 3: Estimation of Fog Deposition onto Cool-temperate Deciduous Forest by the Inferential Method

  • Katata, Genki;Yamaguchi, Takashi;Sato, Haruna;Watanabe, Yoko;Noguchi, Izumi;Hara, Hiroshi;Nagai, Haruyasu
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • Fog deposition onto the cool-temperate deciduous forest around Lake Mashu in northern Japan was estimated by the inferential method using the parameterizations of deposition velocity and liquid water content of fog (LWC). Two parameterizations of fog deposition velocity derived from field experiments in Europe and numerical simulations using a detailed multi-layer atmosphere-vegetation-soil model were tested. The empirical function between horizontal visibility (VIS) and LWC was applied to produce hourly LWC as an input data for the inferential method. Weekly mean LWC computed from VIS had a good correlation with LWC sampled by an active string-fog collector. By considering the enhancement of fog deposition due to the edge effect, fog deposition calculated by the inferential method using two parameterizations of deposition velocity agreed with that computed from throughfall data. The results indicated that the inferential method using the current parameterizations of deposition velocity and LWC can provide a rough estimation of water input due to fog deposition onto cool-temperature deciduous forests. Limitations of current parameterizations of deposition velocity related to wind speed, evaporation loss of rain and fog droplets intercepted by tree canopies, and leaf area index were discussed.