• Title/Summary/Keyword: wind direction change

Search Result 174, Processing Time 0.03 seconds

A Model-Fitting Approach of External Force on Electric Pole Using Generalized Additive Model (일반화 가법 모형을 이용한 전주 외력 모델링)

  • Park, Chul Young;Shin, Chang Sun;Park, Myung Hye;Lee, Seung Bae;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.445-452
    • /
    • 2017
  • Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.

Analysis of Sedimentation and Erosion Environment Change around the Halmi-island, Anmyeondo in West Coast of Korea (안면도 할미섬 주변의 침식·퇴적환경 변화 분석)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2012
  • In this study, we analyzed sedimentation and erosion environment around Halmiseom on Anmyeon Island using wind direction and wind speed data, gain size analysis data and datum-point measured values. To observe changes in sedimentation and erosion environment around Halmiseon, we installed datum points at 12 locations around Halmiseom and carried out at total of 32 field measurements from May 16th, 2010 to May 8th, 2012. The field measurement results showed that H-3, H-4, H-5 and H-9 points are dominated by sedimentation environment, and H-7, H-8, H-10, H-11 and H-12 points are dominated by erosion environment. Meanwhile, sedimentation and erosion appeared alternately at H-2 and H-6 points. These results indicate that a bank installed in the southwest side of Halmiseom prevented sand of the beach from moving to the northeast side, leaving the sand of the beach being deposited at the sites, and the northeast side, where sand was not provided from beach ridge of Halmiseon was dominated by sedimentation. That is, the southwest side of Halmiseom was dominated by sedimentation, but the northeast side was dominated by erosion in general. However, the opposite trends were observed at H-9 point of the northeast side and H-12 point of the southwest side. According to analysis, since H-9 point is located at the end of sand spit connected to Halmiseom, the supply of sediments by a tidal current is possible. On the other hand, it was difficult to analyze the cause of erosion in case of H-12 point located at the sand dune due to the short measurement period.

Monitoring of Bathymetry Changes in the Coastal Area of Dokdo, East Sea (동해 독도 연안 해저지형 변동 모니터링 연구)

  • Chang Hwan Kim;Soon Young Choi;Won Hyuck Kim;Hyun Ok Choi;Chan Hong Park;Yun Bae Kim;Jong Dae Do
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.589-601
    • /
    • 2023
  • We compare high-resolution seabed bathymetry data and seafloor backscattering data acquired, using multi-beam, between 2018 and 2021 to understand topographic changes in the coastal area of Dokdo. The study area, conducted within a 500 m × 500 m in the southern coast between the islands where Dongdo Port is located, has been greatly affected by human activities, waves and ocean currents. The depth variations exhibit between 5 - 70 m. Irregular underwater rocks are distributed in areas with a depth of 20 m or less and 30 - 40 m. As a whole, water depth ranges similar in the east-west direction and become flatter and deeper. The bathymetry contour in 2020 tends to move south as a whole compared to 2018 and 2019. The south moving of the contours in the survey area indicates that the water depth is shallower than before. Since the area where the change in the depth occurred is mainly formed of sedimentary layers, the change in the coast of Dokdo were mainly caused by the inflow of sediments, due to the influence of wind and waves caused by these typhoons (Maysak and Haishen) in 2020. In the Talus area, which developed on the shallow coast between Dongdo and Seodo, the bathymetry changed in 2020 due to erosion or sedimentation, compared to the bathymetry in 2019 and 2018. It is inferred that the changes in the seabed environment occur as the coastal area is directly affected by the typhoons. Due to the influence of the typhoons with strong southerly winds, there was a large amount of sediment inflow, and the overall tendency of the changes was to be deposited. The contours in 2021 appears to have shifted mainly northward, compared to 2020, meaning the area has eroded more than 2020. In 2020, sediments were mainly moved northward and deposited on the coast of Dokdo by the successive typhoons. On the contrary, the coast of Dokdo was eroded as these sediments moved south again in 2021. Dokdo has been largely affected by the north wind in winter, so sediments mainly move southward. But it is understood that sediments move northward when affected by strong typhoons. Such continuous coastal change monitoring and analysis results will be used as important data for longterm conservation policies in relation to topographical changes in Dokdo.

Application of Ventilation Corridor to Mitigate Particulate Matter for the Sejong-Si (미세먼지 저감대책으로서 바람길 적용 방안 : 세종시를 대상으로)

  • Nam, Seongwoo;Sung, Sunyong;Park, Jong-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2020
  • The purpose of this study is to verify the effects of ventilation corridor and derive adequate policy alternatives to its application for the city of Sejong, which is located in an inland of Korean Peninsula. In order to introduce the ventilation corridor in the city, it is necessary both to understand change on fresh air flow affected by the construction of new cities and to show its effects which are able to circulate air flow of the city. The study identified ventilation effects using computational fluid dynamics models. In particular, it analyzed change on wind speed and direction after constructing of a new town and cool air flow along the lowlands generated after sunset. In addition, it identified those of reducing particulate matter when arranging buildings conforming to the ventilation corridor at block level. The policy implications derived from simulation can be summarized as follows. First, it is desirable to plan ventilation corridors so that fresh air from mountains, forests, and valleys can flow into cities and mitigate the concentration of particulate matter. Furthermore, public facilities covering parks, plazas, and playgrounds should be installed preferentially to attract safe outdoor activities near to areas with low levels of particulate matter. Finally, it is adequate to prepare for a number of alternative plans by analyzing ventilation corridors when setting out district unit plan.

Spatial and Temporal Variations of Satellite-derived 10-year Surface Particulate Organic Carbon (POC) in the East China Sea (동중국해에서 위성에서 추정된 10년 동안의 표층 입자성 유기 탄소의 시/공간적 변화)

  • Son, Young-Baek;Lee, Tae-Hee;Choi, Dong-Lim;Jang, Sung-Tae;Kim, Cheol-Ho;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Kim, Moon-Koo;Jung, Seom-Kyu;Ishizaka, Joji
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.421-437
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration estimated from Maximum Normalized Difference Carbon Index (MNDCI) algorithm using SeaWiFS data is used to determine spatial and temporal variations of the Changjiang Diluted Water (CDW) in the East China Sea. 10-year monthly POC concentrations (1997-2007) show clearly seasonal variations. Inter-annual variation of POC in whole and three different areas separated by standard deviation is not linearly correlated with the Changjiang River discharge that has decreased after 1998. To determine more detailed spatial and temporal POC variations, we used empirical orthogonal function (EOF) analysis in summer (Jun.-Sep.) from 2000 to 2007. First mode is spatially and temporally correlated with the area influenced by the Changjiang River discharge. Second mode is temporally less sensitive with the Changjiang River discharge but spatially correlated with north-south patterns. Relatively higher POC variations during 2000 and 2003 were shown in the southern East China Sea. These patterns during 2004 and 2007 moved to the northern East China Sea. This phenomenon is better related to spatial variations of wind-direction than the amount of Changjiang River discharge, which is verified from in-situ measurement.

An Analysis of the Effect of Reducing Temperature and Fine Dust in the Roadside Tree Planting Scenario (가로수 식재 시나리오에 따른 기온 및 미세먼지 저감 효과 분석)

  • Jeong-Hee EUM;Jin-Kyu MIN;Ju-Hyun PARK;Jeong-Min SON;Hong-Duck SOU;Jeong-Hak OH
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.68-81
    • /
    • 2023
  • This study aims to establish a scenario based on the spacing and arrangement of the roadside trees to reduce heat waves and fine dust in cities that occurred during the urbanization process and to quantitatively analyze the degree of reduction. The ENVI-met 5.0.2v model, a micro-climate simulation program, was used to analyze the degree of improvement in the thermal environment and fine dust according to the roadside tree scenario. As a result of temperature analysis according to street tree spacing, the narrower the distance between roadside trees, the lower the temperature during the day as the number of planted trees increased, and a similar pattern was shown regardless of the distance between roadside trees in the morning and evening. In the case of fine dust emitted from the road, the concentration of fine dust increased slightly due to the increase in roadside trees, but the concentration of sidewalks where people walk increased slightly or there was no difference because of blocking fine dust on trees. The temperature according to the arrangement of street trees tended to decrease as the number of planted trees increased as the arrangement increased. However, not only the amount of trees but also the crown projected area was judged to have a significant impact on the temperature reduction because the temperature reduction was greater in the scenario of planting the same amount of trees and widening the interval of arrangement. In terms of the arrangement, the fine dust concentration showed a difference from the results according to the interval, suggesting that the fine dust concentration may change depending on the relationship between the main wind direction and the tree planting direction. By quantitatively analyzing the degree of thermal environment and fine dust improvement caused by roadside trees, this study is expected to promote policies and projects to improve the roadside environment efficiently, such as a basic plan for roadside trees and a project for wind corridor forests.

Surface Ozone Episode Due to Stratosphere-Troposphere Exchange and Free Troposphere-Boundary Layer Exchange in Busan During Asian Dust Events

  • Moon, Y.S.;Kim, Y.K.;K. Strong;Kim, S.H.;Lim, Y.K.;Oh, I.B.;Song, S.K.
    • Journal of Environmental Science International
    • /
    • v.11 no.5
    • /
    • pp.419-436
    • /
    • 2002
  • The current paper reports on the enhancement of O$_3$, CO, NO$_2$, and aerosols during the Asian dust event that occurred over Korea on 1 May 1999. To confirm the origin and net flux of the O$_3$, CO, NO$_2$, and aerosols, the meteorological parameters of the weather conditions were investigated using Mesoscale Meteorological Model 5(MM5) and the TOMS total ozone and aerosol index, the back trajectory was identified using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model(HYSPLIT), and the ozone and ozone precursor concentrations were determined using the Urban Ashed Model(UAM). In the presence of sufficiently large concentrations of NO$\sub$x/, the oxidation of CO led to O$_3$ formation with OH, HO$_2$, NO, and NO$_2$ acting as catalysts. The sudden enhancement of O$_3$, CO, NO$_2$ and aerosols was also found to be associated with a deepening cut-off low connected with a surface cyclone and surface anticyclone located to the south of Korea during the Asian dust event. The wave pattern of the upper trough/cut-off low and total ozone level remained stationary when they came into contact with a surface cyclone during the Asian dust event. A typical example of a stratosphere-troposphere exchange(STE) of ozone was demonstrated by tropopause folding due to the jet stream. As such, the secondary maxima of ozone above 80 ppbv that occurred at night in Busan, Korea on 1 May 2001 were considered to result from vertical mixing and advection from a free troposphere-boundary layer exchange in connection with an STE in the upper troposphere. Whereas the sudden enhancement of ozone above 100 ppbv during the day was explained by the catalytic reaction of ozone precursors and transport of ozone from a slow-moving anticyclone area that included a high level of ozone and its precursors coming from China to the south of Korea. The aerosols identified in the free troposphere over Busan, Korea on 1 May 1999 originated from the Taklamakan and Gobi deserts across the Yellow River. In particular, the 1000m profile indicated that the source of the air parcels was from an anticyclone located to the south of Korea. The net flux due to the first invasion of ozone between 0000 LST and 0600 LST on 1 May 1999 agreed with the observed ground-based background concentration of ozone. From 0600 LST to 1200 LST, the net flux of the second invasion of ozone was twice as much as the day before. In this case, a change in the horizontal wind direction may have been responsible for the ozone increase.

A Field Survey on the Odor Concentration in Piggery by the Change of the Season (돈사 내에서 계절별 악취 발생 농도 조사 연구)

  • Kam, D.H.;Jeong, J.W.;Choi, H.C.;Song, J.I.;Hong, J.T.;Lee, D.W.;Yoo, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.187-194
    • /
    • 2007
  • Six pig farms were surveyed to measure the odor concentrations and characteristics of ammonia and sulfide corollary compounds in piggery. They were depended on the scale of piggery, weather conditions such as temperature, humidity, wind speed and direction, scales and types of pig breeding, and manure treatment methods. The highest ammonia concentrations in piggery were measured during the winter, since the tight sealed insulation in piggery made less amount of generated ammonia discharged from piggery. The objective of this study was to measure concentrations of odor in the piggery by season and growing, and to measure concentrations of odor at boundary area. So, we investigated the raising managements, manure managements, and methods of reducing odor according to farm scale. We found that concentration of ammonia gas in the swine fattening piggery in winter was the highest. This result is consistent with the lower ventilation rate to maintain Indoor temperature. In this result, there was no connection between farm scale and ventilating system. Concentration of ammonia gas was 1.64 ppm at one boundary area in the middle scale. $H_2S$, $CH_3SH$, $(CH_3)_2S$, and $(CH_3)_2S_2$ were below the standard of protection odor policy.

  • PDF

Mountain Meteorology Data for Forest Disaster Prevention and Forest Management (산림재해 방지와 산림관리를 위한 산악기상정보)

  • Keunchang, Jang;Sunghyun, Min;Inhye, Kim;Junghwa, Chun;Myoungsoo, Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.346-352
    • /
    • 2022
  • Mountain meteorology in South Korea that is covered mountains with complex terrain is important for understanding and managing the forest disaster and forest ecosystems. In particular, recent changes in dryness and/or rainfall intensity due to climate change may cause an increase in the possibility of forest disasters. Therefore, accurate monitoring of mountain meteorology is needed for efficient forest management. Korea Forest Service (KFS) is establishing the Automatic Mountain Meteorology Observation Stations (AMOS) in the mountain regions since 2012. 464 AMOSs are observing various meteorological variables such as air temperature, relative humidity, wind speed and direction, precipitation, soil temperature, and air pressure for every minute, which is conducted the quality control (QC) to retain data reliability. QC process includes the physical limit test, step test, internal consistency test, persistence test, climate range test, and median filter test. All of AMOS observations are open to use, which can be found from the Korean Mountain Meteorology Information System (KoMIS, http://mtweather.nifos.go.kr/) of the National Institute of Forest Science and the Public Data Portal (https://public.go.kr/). AMOS observations with guaranteed quality can be used in various forest fields including the public safety, forest recreation, forest leisure activities, etc., and can contribute to the advancement of forest science and technology. In this paper, a series of processes are introduced to collect and use the AMOS dataset in the mountain region in South Korea.

Study on the Aerodynamic Characteristics of an Wing Depending on the Propeller Mounting Position (프로펠러 장착 위치에 따른 날개의 공력 특성 변화 연구)

  • Inseo, Choi;Cheolheui, Han
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • Recently, electric propulsion aircraft with various propeller mounting positions have been under construction. The position of the propeller relative to the wing can significantly affect the aerodynamic performance of the aircraft. Placing the propeller in front of the wing produces a complex swirl flow behind or around the propeller. The up/downwash induced by the swirl flow can alter the wing's local effective angle of attack, causing a change in the aerodynamic load distribution across the wing's spanwise direction. This study investigated the influence of the distance between a propeller and a wing on the aerodynamic loads on the wing. The swirl flow generated by the propeller was modelled using an actuator disk theory, and the wing's aerodynamics were analysed with the VSPAERO tool. Results of the study were compared to wind tunnel test data and established that both axial and spanwise distance between the propeller and the wing positively affect the wing's lift-to-drag ratio. Specifically, it was observed that the lift-to-drag ratio increases when the propeller is positioned higher than the wing.