DOI QR코드

DOI QR Code

프로펠러 장착 위치에 따른 날개의 공력 특성 변화 연구

Study on the Aerodynamic Characteristics of an Wing Depending on the Propeller Mounting Position

  • 최인서 (한국교통대학교 항공.기계설계학과) ;
  • 한철희 (한국교통대학교 항공.기계설계학과)
  • Inseo, Choi (Department of Aeronautical and Mechanical Design Engineering, Korea National University of Transportation) ;
  • Cheolheui, Han (Department of Aeronautical and Mechanical Design Engineering, Korea National University of Transportation)
  • 투고 : 2022.10.04
  • 심사 : 2022.12.09
  • 발행 : 2022.12.31

초록

최근 다양한 형태의 전기추진 항공기가 개발 중이다. 전기추진 항공기에 장착되는 프로펠러의 위치는 항공기 공력성능에 큰 영향을 미칠 수 있다. 날개 앞에 장착된 프로펠러는 프로펠러 주변과 하류방향으로 복잡한 선회 유동(Swirl Flow)을 발생시킨다. 선회 유동으로 발생하는 올려흐름과 내리흐름은 날개의 유효받음각에 영향을 미친다. 날개의 길이 분포 방향으로 발생하는 유효받음각 분포변화는 날개의 공력 하중분포에 영향을 준다. 본 연구에서는 날개에 장착된 프로펠러의 위치가 변화하면서 발생하는 프로펠러-날개 상호작용이 날개의 공력 하중분포에 미치는 영향을 연구했다. 프로펠러-날개 상호작용이 날개에 미치는 영향을 해석하기 위해, 프로펠러에 의한 선회 유동을 Actuator Disk Theory를 사용하여 나타냈다. VSPAERO를 사용하여 날개에서 발생하는 공력을 계산했다. 본 연구방법을 사용하여 얻은 계산결과는 프로펠러-날개 모델을 사용한 풍동시험 자료와 비교·검증했다. 연구결과 프로펠러와 날개 사이의 거리가 날개의 공력특성에 미치는 영향은 크게 나타났다. 축방향 및 날개길이 방향의 거리 증가는 양항비를 증가시켰다. 프로펠러가 날개 상단에 위치할 경우 더 큰 양항비를 얻을 수 있었다.

Recently, electric propulsion aircraft with various propeller mounting positions have been under construction. The position of the propeller relative to the wing can significantly affect the aerodynamic performance of the aircraft. Placing the propeller in front of the wing produces a complex swirl flow behind or around the propeller. The up/downwash induced by the swirl flow can alter the wing's local effective angle of attack, causing a change in the aerodynamic load distribution across the wing's spanwise direction. This study investigated the influence of the distance between a propeller and a wing on the aerodynamic loads on the wing. The swirl flow generated by the propeller was modelled using an actuator disk theory, and the wing's aerodynamics were analysed with the VSPAERO tool. Results of the study were compared to wind tunnel test data and established that both axial and spanwise distance between the propeller and the wing positively affect the wing's lift-to-drag ratio. Specifically, it was observed that the lift-to-drag ratio increases when the propeller is positioned higher than the wing.

키워드

과제정보

본 연구는 한국연구재단 기초연구사업(No.2018 R1D1A3B07050384)과 충청북도(충북경제자유구역청 과제번호 : 202100035, 과제명: 충북형 UAM·AI 드론 산업 활성화 지원체계 구축 및 기반기술 연구)의 지원을 받아 연구가 수행되었으며, 관계자 여러분들께 감사드립니다.

참고문헌

  1. D. Ciliberti, P. D. Vecchia, V. Memmolo, F. Nicolosi, G. Wortmann and F. Ricci, "The Enabling Technologies for a Quasi-zero Emissions Commuter Aircraft," Aerospace, Vol. 9, No. 319, pp. 1-81, Jun, 2022.
  2. B. Sarlioglu and C. T. Morris, "More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft," IEEE Transactions on Transportation Electrification, Vol. 1, pp. 54-64, Jun, 2015. https://doi.org/10.1109/TTE.2015.2426499
  3. ICAO Secretariat, Climate Change Mitigation: CORSIA, Chapter 6, pp. 207-250, 2019.
  4. J. Y. Yun and H. Y. Hwang, "Requirement Analysis of Efficiency, Reliability, Safety, Noise, Emission, Performance and Certification Necessary for the Application of Urban Air Mobility (UAM)," Journal of Advanced Navigation Technology, Vol. 24, No. 5, pp. 329-342, Oct, 2021. https://doi.org/10.12673/JANT.2020.24.5.329
  5. S. Sahoo, X. Zhao and K. Kyprianidis, "A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-based Aircraft," Aerospace, Vol. 7, No. 44, pp. 1-77, Apr, 2020.
  6. W. S. Choi, D. K. Lee and H. Y. Hwang, "Preliminary Conceptual Design of a Multicopter Type eVTOL Using Reverse Engineering Techniques for Urban Air Mobility," Journal of Advanced Navigation Technology, Vol. 25, No. 1, pp. 29-39, Feb, 2021. https://doi.org/10.12673/JANT.2021.25.1.29
  7. H. D. Kim, "A Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology," AIAA Propulsion and Energy Forum, pp. 1-21, Jul, 2018.
  8. R. T. Johnson, D. P. Witkowski and J. P. Sullivan, "Experimental Results of a Propeller/Wing Interaction Study," SAE Transactions, Vol. 100, Section 1: Journal of Aerospace, part. 1, pp. 121-130, Apr, 1991.
  9. G. Fratello, D. Favier and C. Maresca, "Experimental and Numerical Study of the Propeller/Fixed Wing Interaction," Journal of Aircraft, Vol. 28, No. 6, pp. 365-373, Jun, 1991. https://doi.org/10.2514/3.46036
  10. D. P. Witkowski, A. K. H. Lee and J. P. Sullivan, "Aerodynamic Interaction Between Propellers and Wings,"" Journal of Aircraft, Vol. 26, No. 9, pp. 1-12, Sep, 1988.
  11. A. A. Rangwalla, Application of a Potential Code to General Unsteady Flows in Three Dimensions, Iowa State University, USA, Ph.D. Dissertation, 1986.
  12. P. Aref, M. Ghoreyshi, A. Jirasek, M. J. Satchell and K. Bergeron, "Computational Study of Propeller-wing Aerodynamic Interaction," Aerospace, Vol 5. No. 3, pp. 1-20, Jul, 2018.
  13. L. L. M. Veldhuis, Propeller-wing Aerodynamic Interference, Delft, Netherlands, Ph.D. Dissertation, 2005.
  14. M. S. Tai, Y. B. Lee, S. J. Oh, J. W. Shin, J. S. Lim and D. H. Park, "Development of Panel-based Rapid Aerodynamic Analysis Method Considering Propeller Effect," Journal of Korean Society for Aeronautical and Space Sciences, Vol. 49, No. 2, pp. 107-120, Feb, 2021.
  15. D. H. Kim, Y. B. Lee, S. J. Oh, Y. M. Park, J. C. Choi and D. H. Park, "Aerodynamic Analysis and Static Stability Analysis of Manned/unmanned Distributed Propulsion Aircrafts Using Actuator Methods," Journal of Wind Engineering and Industrial Aerodynamics, Vol. 214, pp. 1-16, Jul, 2021.
  16. C. N. D, Sheridan and D. D. V. Pham, "Evaluation of VSPAERO Analysis Capabilities for Conceptual Design of Aircraft with Propeller-blown Wings," AIAA Aviation 2021 Forum, pp. 1-21, Aug, 2021.
  17. OpenVSP, https://openvsp.org/
  18. D. Ciliberti, E. Benard and F. Nicolosi, "Benchmark of Different Aerodynamic Solvers on Wing Aeropropulsive Interactions," 11th EASN 2021, Vol. 1226, pp. 1-8, Feb, 2022.
  19. W. Johnson, Helicopter Theory, Dover Publications, 2012.
  20. J. T. Conway, "Analytical Solutions for the Actuator Disk with Variable Radial Distribution of Load," Journal of Fluid Mechanics, Vol. 297, pp. 297-355, Apr, 1995.
  21. P. M. Sforza, Theory of Aerospace Propulsion 2nd Edition, Butterworth-Heinemann, 2016.
  22. E. P. Hartman and D. Biermann, "Static Thrust and Power Characteristics of Six Full-scale Propeller," NACA-TR-684, 1940.
  23. J. B. Brandt, Small-scale Propeller Performance at Low Speeds, UIUC, USA, M.S. Thesis, 2005.