• Title/Summary/Keyword: wind design

Search Result 2,620, Processing Time 0.035 seconds

Study on the Power Performance on WindPRO Prediction in the Southeast Region of Jeju Island (제주 남동부 지역을 대상으로 한 WindPRO의 발전량 예측에 관한 연구)

  • Hyun, Seunggun;Kim, Keonhoon;Huh, Jongchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.184.1-184.1
    • /
    • 2010
  • In order to research the way to evaluate wind resource without actual Met Mast data, this paper has been carried out on the southeastern region of Jeju island, Korea. Although wind turbine has been an economical alternative energy resource, misjudging the prediction of lifetime or payback period occurs because of the inaccurate assessment of wind resource and the location of wind turbine. Using WindPRO(Ver. 2.7), a software for wind farm design developed by EMD from Denmark, wind resources for the southeastern region of Jeju island was analyzed, and the performance of WindPRO prediction was evaluated in detail. Met Mast data in Su-san 5.5Km far from Samdal wind farm, AWS in Sung-san 4.5km far from Samdal wind farm, and Korea Wind Map data had been collected for this work.

  • PDF

A Study on the Wedge Angle of the Rail Clamp according to the Design Wind Speed Criteria Change

  • Lee Jung-Myung;Han Dong-Seop;Han Geun-Jo;Jeon Young-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.641-646
    • /
    • 2005
  • In cargo-working, it unavoidably happens that the quay crane slip along the rail and the container move from side to side. Especially, they involve a lot of risk in bad weather. The rail clamp is a mooring device to prevent that the quay crane slips along the rail due to bad weather or the wind blast while the quay crane do the cargo-working And it will play a greater role in port container terminal integration and automation To design the wedge type rail clamp, it is very important to determine the wedge angle. In this study, we expect that the design wind speed of the quay crane will change over 16m/s. Assuming that the design wind speed is 40m/s, we determined the proper wedge angle of the wedge type rail clamp for the 50ton class quay crane.

Design of the Various Capacity Wedge-type Rail Clamp for a Quay crane According to the Design Wind Speed Criteria Change (설계 풍속 상향 조정에 따른 Quay crane용 제용량 쐐기형 레일 클램프 설계)

  • Lee J.M.;Han G.J.;Shim J.J.;Han D.S.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1626-1629
    • /
    • 2005
  • Recently many countries have concentrated their effort on the port automation, in order to be the Hub-port, that the Ultra Large Container Ship could come alongside the Quay, in their region. As the magnitude of the container ship increase, that of the Quay crane increases from 50ton-class to 61ton-class more and more. The wind speed criteria to design the structures used in the port was upgraded from 20m/s to 40m/s due to change of the weather condition. Our laboratory could have the ability to design the wedge type rail clamp for 50ton-class Quay crane in 30m/s wind speed. Accordingly we analyzed the load condition of the Quay crane about 40m/s wind speed upgraded from 20m/s and designed the wedge type rail clamp for 50ton and 61ton-class Quay crane.

  • PDF

Aerodynamic Design of 10 kW-level HAWT Rotor Blades (10 kW급 수평축 풍력 터빈 로터 블레이드의 공력 설계)

  • Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.884-890
    • /
    • 2007
  • The procedure for the aerodynamic design of the rotor blades for 10 kW-level HAWT (horizontal axis wind turbine) has been investigated to be practiced systematically. The approximately optimal shape was designed using an inverse method based on the momentum theory and the blade element method. The configuration was tested in the wind tunnel of the Korea Air Force Academy, and the data was compared with those obtained from the real system manufactured from the present design. From this research, the authors established the systematic technolo for wind turbine blades, and set up the technical procedure which can be extended for the future design of middle and large sized wind turbines.

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue life

  • Kong, C.D.;Bang, J.H.;Jeong, J.C.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.88-89
    • /
    • 2002
  • The aims of this study is to realize the structural design for development of a medium scale E-glass/epoxy composite wind turbine blade for a 750KW class horizontal axis wind turbine system. In this study, the various load cases specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads such as aerodynamic and centrifugal loads, loads due to accumulation of ice, hygro-thermal and mechanical loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade were peformed using tile finite element method(FEM). In the structural design, the acceptable blade structural configuration was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable in any various load cases Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design fond and the fatigue.

  • PDF

A Study on the Design of Free-Fall Simulator using concept of Vertical Wind Tunnel (수직형 풍동을 응용한 고공강하 시뮬레이터의 설계에 대한 연구)

  • Choi, Sang-Gil;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.447-452
    • /
    • 2000
  • In this study, the design of Free-Fall Simulator was carried out using concept of vertical wind tunnel. Free-Fall Simulator is not an experimental equipment but a training equipment. Therefore Free-Fall Simulator needs a large training section compared with test section of wind tunnel and has critical limit of height. These limits bring about the difficulty of design for a return passage. Due to small area ratio, the downstream flow of training section with high speed is not decelerated adequately to the fan section. High-speed flow leads to great losses in the small area ratio diffuser and corner. So design of diffusers and corners located between training section and fan section has a great effect on the Free-Fall Simulator performance. This study used an estimation method of subsonic wind tunnel performance. It considered each section of Free-Fall Simulator as an independent section. Therefore loss of one section didn't affect loss of other sections. Because losses of corner with vane and $1^{st}$ diffuser are most parts of overall Free-Fall Simulator, this study focused on the design of these sections.

  • PDF

Comparison of Maximum Section Forces of Greenhouse Structures with respect to Roof Types (원예시설의 지붕형식에 따른 단면력의 비교분석)

  • 이석건;이현우;손정억;이종원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.84-89
    • /
    • 1994
  • Section forces of greenhouse structures were studied to suggest basic information for the structural design of greenhouses with respect to roof types and support conditions. Structural analyses were performed for pitched and arched roof, and fixed and hinged support under snow loads and wind loads. Followings are the results obtained and are expected to be useful in determining the span length and roof type in greenhouse design. 1. Special considerations might he required for roof design at the heavy snow region, and for the support design at the strong wind region, respectively. 2. Single-span structure was found to be stronger than multi-span structure under the snow load, but the former was found to be weaker than the latter under the wind load. 3. Arched roof structure was expected to be safer than pitched roof structure if the dimensions and loads were equal. 4. Greenhouse orientation and roof slope should be considered in optimum structural design of grrenhouses, because these two factors are closely related with the influence of wind load and snow load.

  • PDF

Basic design assessment of coexistent cage aquaculture an offshore wind farm based on numerical analysis (수치해석 기반 해상풍력단지 공존어업설비 기본설계 적정성 평가)

  • Doohyun Kyung;Hoyeop Lee;Keumseok Kang;Sungmin Park;Soowon Kang;Chanjoo Kim
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.30-42
    • /
    • 2024
  • This paper examines the design feasibility of cage aquaculture coexistent with an offshore wind farm in the southwestern sea of South Korea. Among the many types of fish farms, 2 × 3 cage aquaculture was selected for the investigation and the initial design including mooring lines, bridles, etc. was drawn with iterative numerical simulations using Orcaflex. Experimental campaigns were conducted to validate the numerical results, and they were found to be in good agreement with the experiments. Using a validated numerical model, the tension of mooring lines and the deformed volumes of the facility were examined under given operating and survival conditions. The validated model will be further used to investigate various aspects of the cage farm design for design optimization.

Calculation of Wind Loads on the Cladding of Apartment Building according to Panel Size (패널 크기에 따른 아파트 건축물 외장재의 풍하중 산정)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Kim, Won-Sool
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.739-744
    • /
    • 2007
  • Wind loads for cladding can be estimated using the maximum wind pressure including gust effects from wind-tunnel tests. However, when estimating the maximum wind pressure with gust effects, wind pressure coefficients for cladding would be different according to the averaging time of wind pressures, In the paper, for wind pressures obtained from wind-tunnel tests for apartment buildings, whose window panes were damaged by actual strong wind, it was investigated how pressure coefficients varied according to the size of cladding and averaging time using TVL method of Lawson. In result, it was found that the lesser the size of cladding and averaging time were, the larger pressure coefficients became. Accordingly, to estimate wind loads for cladding of apartment buildings and design it, the averaging time of wind pressures should be considered properly.

  • PDF

Multi-MW Class Wind Turbine Blade Design Part II : Structural Integrity Evaluation (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part II : 구조 건전성 평가)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.311-320
    • /
    • 2014
  • Rotor blades are important devices that affect the power performance, efficiency of energy conversion, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. When a design is complete, a design evaluation should be performed to verify the structural integrity of the proposed blade in accordance with international standards or guidelines. This paper presents a detailed exposition of the evaluation items and acceptance criteria required for the design certification of wind turbine blades. It also presents design evaluation results for a 2-MW blade (KR40.1b). Analyses of ultimate strength, buckling stability, and tip displacement were performed using FEM, and Miner's rule was applied to evaluate the fatigue life of the blade. The structural integrity of the KR40.1b blade was found to satisfy the design standards.