• Title/Summary/Keyword: wind design

Search Result 2,601, Processing Time 0.027 seconds

Design and analysis fo wind turbine airfoils (풍력블레이드용 에어포일세트의 설계 및 해석)

  • Shin, Hyung-Ki;Kim, Seok-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.362-365
    • /
    • 2007
  • In wind turbine blades, airfoils are required to have different spec when compared with airplane airfoil. Airfoils for wind turbine blade must have a high lift-to-drag ratio, moderate to high lift and especially low roughness sensitivity. Also an operation Re. No.s are lower than conventional airplane airfoils. At mid-span and inboard region, structural problems have to be considered. Especially, for stall regulated type, moderate stall behavior is essential part of design. For these reasons, airfoil design for HAWT blade is essential part of blade design. In this paper, root airfoil and tip airfoil are discussed. For a root region, 24% thickness airfoil is designed and for a top region, 12% thickness ratio is done. A inverse design method and panel method are used for rapid airfoil design. In this paper, a design method, features of airfoil shape and characteristics are discussed.

  • PDF

Wind Turbine Blade Design using Design of Experiments (실험계획법을 이용한 풍력발전기용 블레이드의 설계)

  • Kang, Ki-Weon;Lee, Seung-Pyo;Chang, Se-Myong;Lee, Jang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.422-422
    • /
    • 2009
  • This paper describes the structural design of small wind turbine blade by using design of experiments. Blade structure consists of skin, spar and foam. The materials for skin and spar are a kind of Glass/Epoxy and form is polyurethane. It has 7 lay-ups with different ply angle. A factorial design is applied to design the ply angles considering manufacturing constraints and to investigate the safety factor which is calculated by structural analysis. In order to perform the structural analysis, the commercial software ABAQUS is used. Tsai-Wu failure criterion is chosen to compute safety factor. The determination of the significance of effects in the experiments is made through the analysis of variance. The results show that ply angle at skin affects the safety factor of wind turbine blade. And from this result, optimal ply angles of composite blade are achieved.

  • PDF

Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings

  • Huang, M.F.;Chan, C.M.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.559-582
    • /
    • 2011
  • This paper presents an integrated wind-induced dynamic analysis and computer-based design optimization technique for minimizing the structural cost of general tall buildings subject to static and dynamic serviceability design criteria. Once the wind-induced dynamic response of a tall building structure is accurately determined and the optimal serviceability design problem is explicitly formulated, a rigorously derived Optimality Criteria (OC) method is to be developed to achieve the optimal distribution of element stiffness of the structural system satisfying the wind-induced drift and acceleration design constraints. The effectiveness and practicality of the optimal design technique are illustrated by a full-scale 60-story building with complex 3D mode shapes. Both peak resultant acceleration criteria and frequency dependent modal acceleration criteria are considered and their influences on the optimization results are highlighted. Results have shown that the use of various acceleration criteria has different implications in the habitability evaluations and subsequently different optimal design solutions. The computer based optimization technique provides a powerful tool for the lateral drift and occupant comfort design of tall building structures.

Current Issues in Wind Engineering: A Review

  • Yong Chul Kim
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.287-297
    • /
    • 2023
  • This paper briefly discusses current issues in wind engineering, including the enhancement of aerodynamic database and AI-assisted design, aerodynamic characteristics of tall buildings with atypical building shapes, application of computation fluid dynamics to wind engineering, evaluation of aerodynamic force coefficients based on a probabilistic method, estimation of tornadic wind speed (JEF scale) and effect of the Ekman Spiral on tall buildings.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

Wind-induced dynamic response and its load estimation for structural frames of single-layer latticed domes with long spans

  • Uematsu, Yasushi;Sone, Takayuki;Yamada, Motohiko;Hongo, Takeshi
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.543-562
    • /
    • 2002
  • The main purpose of this study is to discuss the design wind loads for the structural frames of single-layer latticed domes with long spans. First, wind pressures are measured simultaneously at many points on dome models in a wind tunnel. Then, the dynamic response of several models is analyzed in the time domain, using the pressure data obtained from the wind tunnel experiment. The nodal displacements and the resultant member stresses are computed at each time step. The results indicate that the dome's dynamic response is generally dominated by such vibration modes that contribute to the static response significantly. Furthermore, the dynamic response is found to be almost quasi-static. Then, a series of quasi-static analyses, in which the inertia and damping terms are neglected, is made for a wide range of the dome's geometry. Based on the results, a discussion is made of the design wind load. It is found that a gust effect factor approach can be used for the load estimation. Finally, an empirical formula for the gust effect factor and a simple model of the pressure coefficient distribution are provided.

A study on the Maximum Power Point Tracking Control System of Wind Power Generation (풍력발전의 최대전력점 추종제어 방법에 관한 연구)

  • Ko, Seok-Cheol;Lee, Jae;Lim, Sung-Hun;Kang, Hyeong-Gon;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking (MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

A study on the Maximum Power Point Tracking Control System of Wind Power Generation (풍력발전의 최대전력점 추종제어 방법에 관한 연구)

  • Ko, Seok-Cheol;Lee, Jae;Lim, Sung-Hun;Kang, Hyeong-Gon;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) Is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking(MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

The Wind Load Evaluation on Building Considering Vertical Profile of Fluctuating Wind Force (변동풍력의 연직분포를 고려한 건축물의 풍하중 평가)

  • Ryu, Hye-Jin;Shin, Dong-Hyeon;Ha, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.157-164
    • /
    • 2019
  • The wind tunnel test makes it possible to predict the wind loads for the wind resistant design. There are many methods to evaluate wind loads from data obtained from the wind tunnel test and these methods have advantages and disadvantages. In this study, two of these methods were analyzed and compared. One is the wind load evaluation method by fluctuating displacement and the other is the wind load evaluation method considering vertical profile of fluctuating wind force. The former method is evaluated as the sum of the mean wind load of the average wind force and the maximum value of the fluctuating wind load. The latter method is evaluated as the sum of the mean wind load and maximum value of the background wind load, and the maximum value of the resonant wind load. Two methods were applied to the wind tunnel test to compare the evaluated wind loads according to the two methods, with a maximum difference of about 1.2 times. The wind load evaluated by the method considering vertical profile of the fluctuating wind force (VPFWF) was larger than the wind load evaluated by the method by fluctuating displacement (FD). Especially, the difference of the wind load according to the two methods is large in the lower part of the building and the wind load is reversed at a specific height of the building. VPFWF of evaluating resonant wind loads and background wind loads separately is more reasonable.

Numerical Analysis on the Flow Noise Characteristics of Savonius Wind Turbines (사보니우스 풍력발전기의 유동소음특성에 관한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.502-511
    • /
    • 2013
  • Noise performance of small wind turbines is critical since these are generally installed near the community. In this study, flow noise characteristics of Savonius wind turbines are numerically investigated. Flow field around the turbine are computed by solving unsteady RANS equation using CFD techniques and the radiated noise are predicted by applying acoustic analogy to the computed flow data. Parametric study is then carried out to investigate the effects of operating conditions and geometric design factors of the Savonius wind turbine. Tonal noise components with higher harmonic frequency than the BPF are identified in the predicted noise spectra from a Savonius wind turbine. The end-plates and helical blades are shown to reduce overall noise levels. These results can be used to design low-noise Savonius wind turbines.