• Title/Summary/Keyword: wind design

Search Result 2,594, Processing Time 0.022 seconds

Design feasibility of double-skinned composite tubular wind turbine tower

  • Han, Taek Hee;Park, Young Hyun;Won, Deokhee;Lee, Joo-Ha
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.727-753
    • /
    • 2015
  • A double-skinned composite tubular (DSCT) wind power tower was suggested and automatic section design software was developed. The developed software adopted the nonlinear material model and the nonlinear column model. If the outer diameter, material properties and design capacities of a DSCT wind power tower are given, the developed software performs axial force-bending moment interaction analyses for hundreds of sections of the tower and suggests ten optimized cross-sectional designs. In this study, 80 sections of DSCT wind power towers were designed for 3.6 MW and 5.0 MW turbines. Moreover, the performances of the 80 designed sections were analyzed with and without considerations of large displacement effect. In designing and analyzing them, the material nonlinearity and the confining effect of concrete were considered. The comparison of the analysis results showed the moment capacity loss of the wind power tower by the mass of the turbine is significant and the large displacement effect should be considered for the safe design of the wind power tower.

Effects of upstream two-dimensional hills on design wind loads: A computational approach

  • Bitsuamlak, G.;Stathopoulos, T.;Bedard, C.
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.37-58
    • /
    • 2006
  • The paper describes a study about effects of upstream hills on design wind loads using two mathematical approaches: Computational Fluid Dynamics (CFD) and Artificial Neural Network (NN for short). For this purpose CFD and NN tools have been developed using an object-oriented approach and C++ programming language. The CFD tool consists of solving the Reynolds time-averaged Navier-Stokes equations and $k-{\varepsilon}$ turbulence model using body-fitted nearly-orthogonal coordinate system. Subsequently, design wind load parameters such as speed-up ratio values have been generated for a wide spectrum of two-dimensional hill geometries that includes isolated and multiple steep and shallow hills. Ground roughness effect has also been considered. Such CFD solutions, however, normally require among other things ample computational time, background knowledge and high-capacity hardware. To assist the enduser, an easier, faster and more inexpensive NN model trained with the CFD-generated data is proposed in this paper. Prior to using the CFD data for training purposes, extensive validation work has been carried out by comparing with boundary layer wind tunnel (BLWT) data. The CFD trained NN (CFD-NN) has produced speed-up ratio values for cases such as multiple hills that are not covered by wind design standards such as the Commentaries of the National Building Code of Canada (1995). The CFD-NN results compare well with BLWT data available in literature and the proposed approach requires fewer resources compared to running BLWT experiments.

The Error Analysis of measuring wind speed on Met Mast Shading Effect (기상탑 차폐 영향에 따른 측정 풍속의 오차 분석)

  • Ko, Suk-Whan;Jang, Moon-Seok;Lee, Yoon-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • In the performance test for wind turbines of medium and large, The reference met-mast should be installed for measurement reference wind speed as IEC 61400-12-1 standards and design of booms for mounted an anemometer must be considered exactly. Boom-mounted cup anemometer are influenced by flow distortion of the mast and the boom. Therefore design of booms must be important so that flow distortion due to booms should be kept below 0.5%. But, in some cases at size of met-mast structure, the distance of boom from mast is longer then measurement of wind speed is impossible because of oscillation of boom-mounted anemometer. In this paper, We measured a wind speed at several point from mast and boom and we analyzed the error of wind speed at each point of measurement. Also, we will suggest a correction method using the data curve fitting about errors of wind speed between each point of mounted anemometer.

Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design

  • Ibrahimbegovic, Adnan;Boujelben, Abir
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.233-254
    • /
    • 2018
  • In order to reduce the dependency on fossil fuels, a policy to increase the production capacity of wind turbine is set up. This can be achieved with increasing the dimensions of offshore wind turbine blades. However, this increase in size implies serious problems of stability and durability. Considering the cost of large turbines and financial consequences of their premature failure, it is imperative to carry out numerical simulations over long periods. Here, an energy-conserving time-stepping scheme is proposed in order to ensure the satisfying computation of long-term response. The proposed scheme is implemented for three-dimensional solid based on Biot strain measures, which is used for modeling flexible blades. The simulations are performed at full spatial scale. For reliable design process, the wind loads should be represented as realistically as possible, including the fluid-structure interaction (FSI) dynamic effects on wind turbine blades. However, full-scale 3D FSI simulations for long-term wind loading remain of prohibitive computation cost. Thus, the model to quantify the wind loads proposed here is a simple, but not too simple to be representative for preliminary design studies.

Guideline for Bridge Design Wind Speed in Coastal Region (해안지역 교량 설계풍속 산정 가이드라인)

  • Lee, Sungsu;Kim, Junyeong;Kim, Young-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • Estimation of wind load on bridges is one of the most important aspects in designing bridges in coastal region. Various design codes and researches have suggested the procedure to estimate design wind speed; however, they do not match one another due to many reasons such as incomplete data set, ignorance of wind environment and so on. For this reason, the necessity of guideline for estimation procedure of basic wind speed which reflect the roughness of surface and the topographical effect have been increasing. In this study, we have analysed limitations of the basic wind speed of nationwide suggested by Korea Building code(AIK, 2009) and Highway bridge design code(MOLTMA, 2010). In additional, we set forth guidelines considering the roughness of land surface and the topographical effect. Using the procedure, the basic wind speed were estimated for 15 coastal regions in Korea and compared with those listed in the existing codes.

Wind spectral characteristics on fatigue responses of towerbase and moorings of a floating offshore wind turbine

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.191-218
    • /
    • 2019
  • The tower-platform interface and mooring system of floating offshore wind turbines (FOWTs) are some of the most critical components with significant influences on overall project costs. In addition to satisfying strength requirements, it is typical and vital to meet fatigue criteria for a service life of 25 years or more. Wind spectra characteristics considered in analysis can penalize fatigue designs, leading to unnecessary costs. The International Electrotechnical Commission (IEC, 2009) recommends the use of site-specific wind data (spectrum, turbulence intensity, etc.) in design of FOWTs, but for offshore sites it is often the case that such data is unavailable and land-based data are used as surrogates in design. For such scenarios, it is worth investigating whether such alternative approach is suitable and accurate, and understanding the consequence of the selection of wind spectral characteristics on fatigue design. This paper addresses the impact of the subsequent selection on fatigue responses of towerbase and mooring system in a FOWT, as a sequel to the paper by Udoh and Zou (2018) which focused on impacts on strength design. The 5 MW semi-submersible FOWT platform with six mooring lines implemented in the preceding study is applied in analysis. Results indicate significant variations in resulting fatigue life with considered wind parameters. Thus, it is critical to apply proper wind spectra characteristics for analysis and design of FOWTs to avoid unnecessary conservatism and costs. Based on the findings of this study, more explicit guidance on the application of turbulence intensities for IEC-recommended models in offshore sites could lead to more accurate load estimates in design of FOWTs.

The Wind Pressure Evaluation on Exterior Wall for High-rise Buildings (고층구조물 외벽의 내풍설계를 위한 풍압평가)

  • Lee Kyu-Ung;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.63-70
    • /
    • 2005
  • For using narrow site effectively, recently constructions of high-rise buildings have been increased. High-rise buildings are mainly governed by wind loads. Since wind flow Is vaned irregularly, the experimental method such as wind tunnel test is used to evaluate real wind loads. In this study, it is intended to estimate design wind pressure and amounts of material of cladding by AIK recommendations and wind tunnel test. Also, this study includes the investigation of reliability, suitability and economical efficiency in design of cladding of buildings by AIK recommendations and wind tunnel test by comparing and examining various results. Finally, it is concluded that not only AIK recommendations but also wind tunnel test should be considered to get the reasonable wind pressure acting on the cladding of high-rise buildings.

  • PDF

Wind-induced response and loads for the Confederation Bridge -Part II: derivation of wind loads

  • Bakht, Bilal;King, J. Peter C.;Bartlett, F.M.
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.393-409
    • /
    • 2013
  • This paper uses ten years of on-site monitoring data for the Confederation Bridge to derive wind loads and investigate whether the bridge has experienced its design wind force effects since its completion in 1997. The load effects derived using loads from the on-site monitoring data are compared to the load effects derived using loads from the 1994 and 2009 wind tunnel aerodynamic model tests. The research shows, for the first time, that the aerodynamic model-based methodology originally developed in 1994 is a very accurate method for deriving wind loads for structural design. The research also confirms that the bridge has not experienced its specified (i.e., unfactored) wind force effects since it was opened to traffic in 1997, even during the most severe event that has occurred during this period.

Characteristics of Negative Peak Wind Pressure acting on Tall Buildings with Step on Wall Surface

  • Yoshida, Akihito;Masuyama, Yuka;Katsumura, Akira
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.283-290
    • /
    • 2019
  • Corner cut, corner chamfered or a building shape change are adopted in the design of tall buildings to achieve aerodynamic superiority as well as response reduction. Kikuchi et.al pointed out that large negative peak external pressures can appear near the inside corner of set-back low rise buildings. It is therefore necessary to pay attention to facade design around steps in building surfaces. Peak wind pressures for corner cut or corner chamfered configurations are given in the AIJ code. However, they cannot be applied where there are many variations of vertical and horizontal steps. There has been no previous systematic research on peak wind pressures around steps in building surfaces. In this study, detailed phenomenon of peak wind pressures around steps in buildings are investigated focusing on vertical and horizontal distances from the building's corner.

Estimation of Basic Wind Speeds Reflecting Recent Wind Speed Data (최신 풍속자료를 반영한 기본풍속 산정)

  • Choi, Sang-Hyun;Seo, Kyung-Seok;Sung, Ik-Hyun;Lee, Su-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • Recent increase in the strength and frequency of typoons due to climate change claims reconsideration of the design wind load in existing design codes for civil engineering structures in which the basic wind speed is estimated based on meteorological data by mid 1990s. In this paper, based on wind speed data at 76 observatories in Korea from 1961 through 2008, the basic wind speeds which can be utilized in designing civil engineering structures including buildings and bridges are estimated using the statistical process. The return period of the wind speed for each location is determined using the Gumbel distribution. The results for considered locations are compared to the existing design codes. Also, for design applications, the wind speed map, which classifies the country into four basic wind speed zones, is proposed using the resulting basic wind speeds.