• Title/Summary/Keyword: wind comfort

Search Result 129, Processing Time 0.028 seconds

Thermal Characteristics of Men's Suit Ensembles (남성용 정장의 온열특성 연구)

  • Song, Min-Kyu;Jeon, Byung-Ik
    • Fashion & Textile Research Journal
    • /
    • v.1 no.3
    • /
    • pp.264-274
    • /
    • 1999
  • The thermal resistance of 60 men's suits for summer and winter was measured to determine their thermal characteristics and physical properties, including air permeability, weight, and thickness of the jackets and trousers consisted of the ensembles were measured to predict the thermal resistance of garments and ensembles. In this study, general physical properties of the men' suit ensembles were determined. In general, thickness and weight of winter ensembles were greater than those of summer ensembles. A factor which could distinguish the difference between summer and winter ensembles was the air permeability. The air permeability of summer ensembles was 3~6 times greater than those of winter ensembles. For the thermal characteristics, the thermal resistance of winter ensembles were higher than those of summer ensembles. When the wind was involved, the thermal resistance of both ensembles decreased up to 30%. In addition, the equations were developed to predict the thermal resistance of the garments and ensembles when there was no air velocity and the thermal resistance of the ensembles with air velocity of 1.2 m/sec. Looking at the equations, thickness, weight, and size of the garments were the definite factors that affect the thermal resistance of the samples.

  • PDF

The Gradient Variation of Thermal Environments on the Park Woodland Edge in Summer - A Study of Hadongsongrim and Hamyangsangrim - (여름철 공원 수림지 가장자리의 온열환경 기울기 변화 - 하동송림과 함양상림을 대상으로 -)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.73-85
    • /
    • 2015
  • This study investigated the extent and magnitude of the woodland edge effects on users' thermal environments according to distance from woodland border. A series of experiments to measure air temperature, relative humidity, wind velocity, MRT and UTCI were conducted over six days between July 31 and August 5, 2015, which corresponded with extremely hot weather, at the south-facing edge of Hadongsongrim(pure Pinus densiflora stands, tree age: $100{\pm}33yr$, tree height: $12.8{\pm}2.7m$, canopy closure: 75%, N $35^{\circ}03^{\prime}34.7^{{\prime}{\prime}}$, E $127^{\circ}44^{\prime}43.3^{{\prime}{\prime}}$, elevation 7~10m) and east-facing edge of Hamyangsangrim (Quercus serrata-Carpinus tschonoskii community, tree age: 102~125yr/58~123yr, tree height: tree layer $18.6{\pm}2.3m/subtree$ layer $5.9{\pm}3.2m/shrub$ layer $0.5{\pm}0.5m$, herbaceous layer coverage ratio 60%, canopy closure: 96%, N $35^{\circ}31^{\prime}28.1^{{\prime}{\prime}}$, E $127^{\circ}43^{\prime}09.8^{{\prime}{\prime}}$, elevation 170~180m) in rural villages of Hadong and Hamyang, Korea. The minus result value of depth means woodland's outside. The depth of edge influence(DEI) on the maximum air temperature, minimum relative humidity and wind speed at maximum air temperature time during the daytime(10:00~17:00) were detected to be $12.7{\pm}4.9$, $15.8{\pm}9.8$ and $23.8{\pm}26.2m$, respectively, in the mature evergreen conifer woodland of Hadongsongrim. These were detected to be $3.7{\pm}2.2$, $4.9{\pm}4.4$ and $2.6{\pm}7.8m$, respectively, in the deciduous broadleaf woodland of Hamyansangrim. The DEI on the maximum 10 minutes average MRT, UTCI from the three-dimensional environment absorbed by the human-biometeorological reference person during the daytime(10:00~17:00) were detected to be $7.1{\pm}1.7$ and $4.3{\pm}4.6m$, respectively, in the relatively sparse woodland of Hadongsongrim. These were detected to be $5.8{\pm}4.9$ and $3.5{\pm}4.1m$, respectively, in the dense and closed woodland of Hadongsongrim. Edge effects on the thermal environments of air temperature, relative humidity, wind speed, MRT and UTCI in the sparse woodland of Hadongsongrim were less pronounced than those recorded in densed and closed woodland of Hamyansangrim. The gradient variation was less steep for maximum 10 minutes average UTCI with at least $4.3{\pm}4.6m$(Hadongsongrim) and $3.5{\pm}4.1m$(Hamyansangrim) being required to stabilize the UTCI at mature woodlands. Therefore it is suggested that the woodlands buffer widths based on the UTCI values should be 3.5~7.6 m(Hamyansangrim) and 4.3~8.9(Hadongsongrim) m on each side of mature woodlands for users' thermal comfort environments. The woodland edge structure should be multi-layered canopies and closed edge for the buffer effect of woodland edge on woodland users' thermal comfort.

Analysis of Human Thermal Environment in an Apartment Complex in Late Spring and Summer - Magok-dong, Gangseo-gu, Seoul- (아파트 단지의 늦봄·여름철 인간 열환경 분석 - 서울특별시 강서구 마곡동 -)

  • Park, Sookuk;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.68-77
    • /
    • 2022
  • The human thermal environment in an apartment complex located in Seoul was quantitatively analyzed to devise methods to modify human heat-related stresses in landscape and urban planning. Microclimatic data (air temperature, relative humidity, wind speed, and short- and long-wave radiation) were collected at 6 locations [Apt-center, roof (cement), roof (grass), ground, playground, and a tree-lined road] in the late spring and summer, and the data were used to estimate the human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI). As a result, the playground location had the highest thermal environment, and the roof (grass) location had the lowest. The mean difference between the two locations was 0.8-1.1℃ in air temperature, 1.8-4.0% in relative humidity, and 7.5-8.0℃ in mean radiant temperature. In open space locations, the wind speed was 0.4-0.5 ms-1 higher than others. Also, a wind tunnel effect happened at the Apt-center location during the afternoon. For the human thermal sensation, PET and UTCI, the mean differences between the playground and roof (grass) locations were: 5.2℃ (Max. 11.7℃) in late spring and 5.4℃ (Max. 18.1℃) in summer in PET; and 3.0℃ (Max. 6.1℃) in late spring and 2.6℃ (Max. 9.8℃) in summer in UTCI. The mean differences indicated a level change in PET and 1/2 level in UTCI, and the maximum differences showed greater changes, 2-3 levels in PET, and 1-1.5 levels in UTCI. Moreover, the roof (grass) location gave 4.6℃ PET reduction and a 2.5℃ UTCI reduction in late spring, and a 4.4℃ PET reduction and a 2.0℃ UTCI reduction in the summer when compared with the roof (cement) location, which results in a 2/3 level change in PET and a 1/3 level in UTCI. Green infrastructure locations [roof (grass), ground, and a tree-lined road] were not statistically significant in the reduction of PET and UTCI in thermal environment modifying effects. The implementation of green infrastructure, such as rooftop gardens, grass pavement, and street tree planting, should be adopted in landscape planning and be employed for human thermal environment modification.

The Effects of Pergola Wisteria floribunda's LAI on Thermal Environment (그늘시렁 Wisteria floribunda의 엽면적지수가 온열환경에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.115-125
    • /
    • 2017
  • This study was to investigate the user's thermal environments under the pergola($L\;7,200{\times}W\;4,200{\times}H\;2,700mn$) covered with Wisteria floribunda(Willd.) DC. according to the variation of leaf area index(LAI). We carried out detailed measurements with two human-biometeorological stations on a popular square Jinju, Korea($N35^{\circ}10^{\prime}59.8^{{\prime}{\prime}}$, $E\;128^{\circ}05^{\prime}32.0^{{\prime}{\prime}}$, elevation: 38m). One of the stations stood under a pergola, while the other in the sun. The measurement spots were instrumented with microclimate monitoring stations to continuously measure air temperature and relative humidity, wind speed, shortwave and longwave radiation from the six cardinal directions at the height of 0.6m so as to calculate the Universal Thermal Climate Index(UTCI) from $9^{th}$ April to $27^{th}$ September 2017. The LAI was measured using the LAI-2200C Plant Canopy Analyzer. The analysis results of 18 day's 1 minute term human-biometeorological data absorbed by a man in sitting position from 10am to 4pm showed the following. During the whole observation period, daily average air temperatures under the pergola were respectively $0.7{\sim}2.3^{\circ}C$ lower compared with those in the sun, daily average wind speed and relative humidity under the pergola were respectively 0.17~0.38m/s and 0.4~3.1% higher compared with those in the sun. There was significant relationship in LAI, Julian day number and were expressed in the equation $y=-0.0004x^2+0.1719x-11.765(R^2=0.9897)$. The average $T_{mrt}$ under the pergola were $11.9{\sim}25.4^{\circ}C$ lower and maximum ${\Delta}T_{mrt}$ under the pergola were $24.1{\sim}30.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average $T_{mrt}$ compared with those in the sun and was expressed in the equation $y=0.0678{\ln}(x)+0.3036(R^2=0.9454)$. The average UTCI under the pergola were $4.1{\sim}8.3^{\circ}C$ lower and maximum ${\Delta}UTCI$ under the pergola were $7.8{\sim}10.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average UTCI compared with those in the sun and were expressed in the equation $y=0.0322{\ln}(x)+0.1538(R^2=0.8946)$. The shading by the pergola covered with vines was very effective for reducing daytime UTCI absorbed by a man in sitting position at summer largely through a reduction in mean radiant temperature from sun protection, lowering thermal stress from very strong(UTCI >$38^{\circ}C$) and strong(UTCI >$32^{\circ}C$) down to strong(UTCI >$32^{\circ}C$) and moderate(UTCI >$26^{\circ}C$). Therefore the pergola covered with vines used for shading outdoor spaces is essential to mitigate heat stress and can create better human thermal comfort especially in cities during summer. But the thermal environments under the pergola covered with vines during the heat wave supposed to user "very strong heat stress(UTCI>$38^{\circ}C$)". Therefore users must restrain themselves from outdoor activities during the heat waves.

Thre Traditional Perception and Viewpoint to Natural Environment in the Orient (동양의 전통적 환경인식과 환경관)

  • 오홍석
    • Hwankyungkyoyuk
    • /
    • v.3 no.1
    • /
    • pp.55-62
    • /
    • 1992
  • In the orient, ancestor's perception to natural environment was related on the change of climate. Man had been a essence of the warm blood animal, which had suited in mild climate for living and acting. The weather of hot or cold was not only comfort in human life but influences negatively on human behavior. The most people of oriental was particularly interrelated to seasonal change of climate in earlier time. Because, there are elements such as temperature, humidity and wind in the category of climate, these elements differentiated seasonal change. The main methods of perception of natural environment were observed and classified. Although these methods were in the primitive stage, these coincided the tendency of modern science. For example, confucian was recognized the law of vertical air current that warm air rised and cold air sinked. And they could classify all elements nature based on the principles of 'Yin and Yang(陰陽論)' such as male and female, the sun and moon. shade and light etc. Thus results of the observation and the classification concerned with physical environment can be utilize a wisdom for progressive life of inhabitants. It was a origin of the education in natural environment. Commonness in the viewpoint of environment in the orient if recognized the law of circulation. Buddhism, originated in india, realized that all of phenomena in the world was changed slowly through the principles of cycle(輪廻說) such as male and female, the sun and moon, shade and light etc. Thus results of the observation and the classification concerned with physical environment can be utilized a wisdom for progressive life of inhabitants. It was a origin of the education in natural environment. Commonness in the viewpoint of environment in the orient if recognized the law of circulation. Buddhism, originated in India, realized that all of phenomena in the world was changed slowly through the principles of cycle(輪廻說). For example, whole of land is shifted from young stage to old stage as the life cycle of humanbeing. The theory of karma effects(葉報設) is so signify with the good result that good one's action is reap a sweet fruit. The most environmental problem in today must realized as a consequence of men's act. Then Taoism emphasized the pure nature without the artificiality. Because complexual environment was composed of several elements, It was maintained through the artificiality. Because complexual environment was composed of several elements, It was maintained through the interaction of cause and effects. The solution of environmental problem is maintenanced the harmony between cause and effects by a philosophical concept.

  • PDF

Evaluation of the Wet Bulb Globe Temperature (WBGT) Index for Digital Fashion Application in Outdoor Environments

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.23-36
    • /
    • 2017
  • Objective: This paper presents a study to evaluate the WBGT index for assessing the effects of a wide range of outdoor weather conditions on human responses. Background: The Wet Bulb Globe Temperature (WBGT) index was firstly developed for the assessment of hot outdoor conditions. It is a recognised index that is used world-wide. It may be useful over a range of outdoor conditions and not just for hot climates. Method: Four group experiments, involving people performing a light stepping activity, were conducted to determine human responses to outside conditions in the U.K. They were conducted in September 2007 (autumn), December 2007 (winter), March 2008 (spring) and June 2008 (summer). Environmental measurements included WBGT, air temperature, radiant temperature (including solar load), humidity and wind speed all measured at 1.2m above the ground, as well as weather data measured by a standard weather station at 3m to 4m above the ground. Participants' physiological and subjective responses were measured. When the overall results of the four seasons are considered, WBGT provided a strong prediction of physiological responses as well as subjective responses if aural temperature, heart rate and sweat production were measured. Results: WBGT is appropriate to predict thermal strain on a large group of ordinary people in moderate conditions. Consideration should be given to include the WBGT index in warning systems for a wide range of weather conditions. However, the WBGT overestimated physiological responses of subjects. In addition, tenfold Borg's RPE was significantly different with heart rate measured for the four conditions except autumn (p<0.05). Physiological and subjective responses over 60 minutes consistently showed a similar tendency in the relationships with the $WBGT_{head}$ and $WBGT_{abdomen}$. Conclusion: It was found that either $WBGT_{head}$ or $WBGT_{abdomen}$ could be measured if a measurement should be conducted at only one height. The relationship between the WBGT values and weather station data was also investigated. There was a significant relationship between WBGT values at the position of a person and weather station data. For UK daytime weather conditions ranging from an average air temperature of $6^{\circ}C$ to $21^{\circ}C$ with mean radiant temperatures of up to $57^{\circ}C$, the WBGT index could be used as a simple thermal index to indicate the effects of weather on people. Application: The result of evaluation of WBGT might help to develop the smart clothing for workers in industrial sites and improve the work environment in terms of considering workers' wellness.

A Study of the Urban Tree Canopy Mean Radiant Temperature Mitigation Estimation (도시림의 여름철 평균복사온도 저감 추정 연구)

  • An, Seung Man;Son, Hak-gi;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.93-106
    • /
    • 2016
  • This study aimed to estimate and evaluate the thermal mitigation of the urban tree canopy on the summer outdoor environment by quantitative use of mean radiant temperature. This study applied the SOLWEIG model based $T_{mrt}$ comparison method by using both (1) urban tree canopy presence examples and (2) urban tree canopy absence examples as constructed from airborne LiDAR system based three-dimensional point cloud data. As a result, it was found that an urban tree canopy can provide a decrease in the entire domain averaged daily mean $T_{mrt}$ about $5^{\circ}C$ and that the difference can increase up to $33^{\circ}C$ depending both on sun position and site conditions. These results will enhance urban microclimate studies such as indices (e.g., wind speed, humidity, air temperature) and biometeorology (e.g., perceived temperature) and will be used to support forest based public green policy development.

A Study on Improvement of Site Selecting Indicators for Safe Pedestrian Environment (안전한 보행환경 사업 대상지 선정지표 개선방안 연구)

  • Lee, Jong Nam;Heo, Joon;Cho, Won Cheol;Lee, Tae Shik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.1
    • /
    • pp.79-86
    • /
    • 2013
  • As car-oriented road policies have been made forward so far, relatively pedestrians' walking conditions are so in poor environments that more than two thousand pedestrians die from car accidents every year. Pedestrians' walking right has been severely invaded like that. Pedestrians' walking right is a right that people are able to walk safely and comfortably in pleasant surroundings as long as they don't threaten the public safety, order maintenance, and welfare. The government has an obligation to provide safe, comfortable, and pleasant environments to pedestrians. Recently interests in pedestrians' safety are increasing, government-driven supports have been made to make safe, pleasant, and healthy walking surroundings. As poor walking condition improvement projects cost high, they should be progressed to accomplish maximal effects using finite finances efficiently, and post feasibility evaluations of the projects should be severely estimated. However site selecting indicators which satisfy with the goal for composing safe working surroundings have not been decided yet, though currently it has a legal basis to specify walking condition improvement sites by the Law for Pedestrians' safety and Comfort Increasement. Therefore this study focuses on suggesting improved ways for selecting sites where pedestrians' safe environment project by reviewing previous research. When project sites are selected, evaluation indicators related to awareness survey of residents and history should be excluded, and disaster safety assessments for walking safety facilities, latent human hazards and natural disasters like a strong wind are proposed besides evaluations on pedestrians' safety and walking environment for matching with the purpose of the project to make safe working surroundings.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.