• Title/Summary/Keyword: width of histogram

Search Result 39, Processing Time 0.025 seconds

Text Location and Extraction for Business Cards Using Stroke Width Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • Text extraction and binarization are the important pre-processing steps for text recognition. The performance of text binarization strongly related to the accuracy of recognition stage. In our proposed method, the first stage based on line detection and shape feature analysis applied to locate the position of a business card and detect the shape from the complex environment. In the second stage, several local regions contained the possible text components are separated based on the projection histogram. In each local region, the pixels grouped into several connected components based on the connected component labeling and projection histogram. Then, classify each connect component into text region and reject the non-text region based on the feature information analysis such as size of connected component and stroke width estimation.

3D Film Image Classification Based on Optimized Range of Histogram (히스토그램의 최적폭에 기반한 3차원 필름 영상의 분류)

  • Lee, Jae-Eun;Kim, Young-Bong;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.71-78
    • /
    • 2021
  • In order to classify a target image in a cluster of images, the difference in brightness between the object and the background is mainly concerned, which is not easy to classify if the shape of the object is blurred and the sharpness is low. However, there are a few studies attempted to solve these problems, and there is still the problem of not properly distinguishing between wrong pattern and right pattern images when applied to actual data analysis. In this paper, we propose an algorithm that classifies 3D films into sharp and blurry using the width of the pixel values histogram. This algorithm determines the width of the right and wrong images based on the width of the pixel distributions. The larger the width histogram, the sharp the image, while the shorter the width histogram the blurry the image. Experiments show that the proposed algorithm reflects that the characteristics of these histograms allows classification of all wrong images and right images. To determine the reliability and validity of the proposed algorithm, we compare the results with the other obtained from preprocessed 3D films. We then trained the 3D films using few-shot learning algorithm for accurate classification. The experiments verify that the proposed algorithm can perform higher without complicated computations.

3D Film Image Inspection Based on the Width of Optimized Height of Histogram (히스토그램의 최적 높이의 폭에 기반한 3차원 필름 영상 검사)

  • Jae-Eun Lee;Jong-Nam Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.107-114
    • /
    • 2022
  • In order to classify 3D film images as right or wrong, it is necessary to detect the pattern in a 3D film image. However, if the contrast of the pixels in the 3D film image is low, it is not easy to classify as the right and wrong 3D film images because the pattern in the image might not be clear. In this paper, we propose a method of classifying 3D film images as right or wrong by comparing the width at a specific frequency of each histogram after obtaining the histogram. Since, it is classified using the width of the histogram, the analysis process is not complicated. From the experiment, the histograms of right and wrong 3D film images were distinctly different, and the proposed algorithm reflects these features, and showed that all 3D film images were accurately classified at a specific frequency of the histogram. The performance of the proposed algorithm was verified to be the best through the comparison test with the other methods such as image subtraction, otsu thresholding, canny edge detection, morphological geodesic active contour, and support vector machines, and it was shown that excellent classification accuracy could be obtained without detecting the patterns in 3D film images.

Fuzzy histogram in estimating loss distributions for operational risk (운영 위험 관련 손실 분포 - 퍼지 히스토그램의 효과)

  • Pak, Ro-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.705-712
    • /
    • 2009
  • Histogram is the oldest and most widely used density estimator for presentation and exploration of observed univariate data. The structure of a histogram really depends on the number of bins and the width of the bins, so that slight changes on bins can produce totally different shape of a histogram. In order to solve this problem the fuzzy histogram was introduced and the result was good enough (Loquin and Strauss, 2008). In particular, when estimating loss distribution related with operational risk a histogram has been widely used. In this article, instead of an ordinary histogram we try to use a fuzzy histogram for estimating loss distribution and show that a fuzzy histogram provide more stable results.

  • PDF

Estimation of Maximum Crack Width Using Histogram Analysis in Concrete Structures (히스토그램 분석을 이용한 콘크리트 구조물의 최대 균열 폭 평가)

  • Lee, Seok-Min;Jung, Beom-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.9-15
    • /
    • 2019
  • The purpose of present study is to assess the maximum width of the surface cracks using the histogram analysis of image processing techniques in concrete structures. For this purpose, the concrete crack image is acquired by the camera. The image is Grayscale coded and Binary coded. After Binary coded image is Dilate and Erode coded, the image is then recognized as separated objects by applying Labeling techniques. Over time, dust and stains may occur naturally on the surface of concrete. The crack image of concrete may include shadows and reflections by lighting depending on a surrounding conditions. In general, concrete cracks occur in a continuous pattern and noise of image appears in the form of shot noises. Bilateral Blurring and Adaptive Threshold apply to the Grayscale image to eliminate these effects. The remaining noises are removed by the object area ratio to the Labeled area. The maximum numbers of pixels and its positions in the crack objects without noises are calculated in x-direction and y-direction by Histogram analysis. The widths of the crack are estimated by trigonometric ratio at the positions of the pixels maximum numbers for the Labeled objects. Finally, the maximum crack width estimated by the proposed method is compared to the crack width measured with the crack gauge. The proposed method by the present study may increase the reliability for the estimation of maximum crack width using image processing techniques in concrete surface images.

FREQUENCY HISTOGRAM MODEL FOR LINE TRANSECT DATA WITH AND WITHOUT THE SHOULDER CONDITION

  • EIDOUS OMAR
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.1
    • /
    • pp.49-60
    • /
    • 2005
  • In this paper we introduce a nonparametric method for estimating the probability density function of detection distances in line transect sampling. The estimator is obtained using a frequency histogram density estimation method. The asymptotic properties of the proposed estimator are derived and compared with those of the kernel estimator under the assumption that the data collected satisfy the shoulder condition. We found that the asymptotic mean square error (AMSE) of the two estimators have about the same convergence rate. The formula for the optimal histogram bin width is derived which minimizes AMSE. Moreover, the performances of the corresponding k-nearest-neighbor estimators are studied through simulation techniques. In the absence of our knowledge whether the shoulder condition is valid or not a new semi-parametric model is suggested to fit the line transect data. The performances of the proposed two estimators are studied and compared with some existing nonparametric and semiparametric estimators using simulation techniques. The results demonstrate the superiority of the new estimators in most cases considered.

Analysis on Longitudinal Dose according to Change of Field Width (선속 폭(Field Width) 변화에 따른 종축선량 분석)

  • Jung, Won-Seok;Back, Jong-Geal;Shin, Ryung-Mi;Oh, Byung-Cheon;Jo, Jun-Young;Kim, Gi-Chul;Choi, Tae-Gu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2011
  • Purpose: To analyze the accuracy of tumor volume dose following field width change, to check the difference of dose change by using self-made moving car, and to evaluate practical delivery tumor dose when tomotherapy in the treatment of organ influenced by breathing. Materials and Methods: By using self-made moving car, the difference of longitudinal movement (0.0 cm, 1.0 cm, 1.5 cm, 2.0 cm) was applied and compared calculated dose with measured dose according to change of field width (1.05 cm, 2.50 cm, 5.02 cm) and apprehended margin of error. Then done comparative analysis in degree of photosensitivity of DQA film measured by using Gafchromic EBT film. Dose profile and Gamma histogram were used to measure degree of photosensitivity of DQA film. Results: When field width were 1.05 cm, 2.50 cm, 5.02 cm, margin of error of dose delivery coefficient was -2.00%, -0.39%, -2.55%. In dose profile of Gafchromic EBT film's analysis, the movement of moving car had greater motion toward longitudinal direction and as field width was narrower, big error increased considerably at high dose part compared to calculated dose. The more field width was narrowed, gamma index had a large considerable influence of moving at gamma histogram. Conclusion: We could check the difference of longitudinal dose of moving organ. In order to small field width and minimize organ moving due to breathing, it is thought to be needed to develop breathing control unit and fixation tool.

  • PDF

Writer Verification Using Spatial Domain Features under Different Ink Width Conditions

  • Kore, Sharada Laxman;Apte, Shaila Dinkar
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.39-50
    • /
    • 2016
  • In this paper, we present a comparative study of spatial domain features for writer identification and verification with different ink width conditions. The existing methods give high error rates, when comparing two handwritten images with different pen types. To the best of our knowledge, we are the first to design the feature with different ink width conditions. To address this problem, contour based features were extracted using a chain code method. To improve accuracy at higher levels, we considered histograms of chain code and variance in bins of histogram of chain code as features to discriminate handwriting samples. The system was trained and tested for 1,000 writers with two samples using different writing instruments. The feature performance is tested on our newly created dataset of 4,000 samples. The experimental results show that the histogram of chain code feature is good compared to other methods with false acceptance rate of 11.67%, false rejection rate of 36.70%, average error rates of 24.18%, and average verification accuracy of 75.89% on our new dataset. We also studied the effect of amount of text and dataset size on verification accuracy.

Title Extraction from Book Cover Images Using Histogram of Oriented Gradients and Color Information

  • Do, Yen;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • In this paper, we present a technique to extract the title areas from book cover images. A typical book cover image may contain text, pictures, diagrams as well as complex and irregular background. In addition, the high variability of character features such as thickness, font, position, background and tilt of the text also makes the text extraction task more complicated. Therefore, we propose a two steps efficient method that uses Histogram of Oriented Gradients and color information to find the title areas. Firstly, text localization is carried out to find the title candidates. Finally, refinement process is performed to find the sufficient components of title areas. To obtain the best result, we also use other constraints about the size, ratio between the length and width of the title. We achieve encouraging results of extracted title regions from book cover images which prove the advantages and efficiency of the proposed method.

Histogram-based road border line extractor for road extraction from satellite imagery (위성영상에서 도로 추출을 위한 히스토그램 기반 경계선 추출자)

  • Lee, Dong-Hoon;Kim, Jong-Hwa;Choi, Heung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.28-34
    • /
    • 2007
  • A histogram-based road border line extractor is proposed for an efficient road extraction from the high-resolution satellite imagery. The road border lines are extracted from an edge strength map based on the directional histogram difference between the road and the non-road region. The straight and the curved roads are extracted hierarchically from the edge strength map of the original image and the segmented road cluster images, and the road network is constructed based on the connectivity. Unlike the conventional approaches based on the spectral similarity, the proposed road extraction method is more robust to noise because it extracts roads based on the histogram, and is able to extract both the location and the width of roads. In addition, the proposed method can extract roads with various spectral characteristics by identifying the road clusters automatically. Experimental results on IKONOS multi-spectral satellite imagery with high spatial resolution show that the proposed method can extract the straight and the curved roads as well as the accurate road border lines.