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FREQUENCY HISTCGRAM MODEL FOR LINE
TRANSECT DATA WITH AND WITHOUT THE
SHOULDZR CONDITION

OMAR Eipous !

ABSTRACT

In this paper we introduce a nonparametric method for estimating the
probability density function of detection distances in line transect sampling.
The estimator is obtained using a frequency histogram density estimation
method. The asymptotic properties of the proposed estimator are derived
and compared with those of the kernel estimator under the assumption that
the data collected satisfy the shoulder condition. We found that the asymp-
totic mean square error (AMSE) of the two estimators have about the
same convergence rate. The formula for the optimal histogram bin width
is derived which minimizes AMSE. Moreover, the performances of the
corresponding k-nearest-neighbor estimators are studied through simulation
techniques. In the absence of our knowledge whether the shoulder condition
is valid or not a new semi-parametric model is suggested to fit the line tran-
sect data. The performances of the proposed two estimators are studied and
compared with some existing nonparametric and semiparametric estimators
using simulation techniques. The results demonstrate the superiority of the
new estimators in most cases considered.

AMS 2000 subject classifications. Primary 62D05.
Keywords. Line transect method; shoulder condition; frequency histogram method; ker-
nel method.

1. INTRODUCTION

Line transect method is commonly used by biologists to estimate population
density. In addition to its logical framework with intuitive reasoning, sampling
using line transect has been a very convenient, easy and relatively cheaper method
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to obtain density of any living or non-living object in an ecosystem. To achieve
the experiment, at least one observer moves across the population following a
specific line with length L, looking to the right and to the left of the line. It
is not sufficient just to record the number of observed objects, n; instead an
observer must take the perpendicular distance (z) from from the centerline to a
detected object. When objects are observed from a line transect with a detection
function g(z), the distance z to observed object from randomly placed transect
will tend to have a probability density f(z) of the same shape as g(z) but scaled
so that the area under f(z) equal unity. Buckland et al. (1980) constitute the
key references for this distance sampling procedure.

Logical considerations deriving from the analysis of the physical sighting pro-
cess suggest that g(z) may usually be assumed monotonically decreasing and
satisfying the shoulder condition (i.e. ¢'(z) = 0). Accordingly, f(z) is in turn
monotonically decreasing with f'(0) = 0. However, recent studies have shown
that the shoulder condition may not hold for many wildlife line transect data
such as whales, jack rabbits, cotton tails and impalas (Buckland, 1985). The
basic model for line transect sampling is introduced in the key paper by Burn-
ham and Anderson (1976) who obtain the fundamental relation for estimating
the density of objects in a specific area which can be expressed as

_ E(n)f(0)
b=—"3
Accordingly, D can be estimated by
5 _ nf(0)
b==

where f (0) represents a sample estimator of f(0) based on the n observed perpen-
dicular distances z1,z9,...,Z, which is usually supposed to be random sample
(Buckland et al., 1993). Hence, the key aspects in line transect sampling turns
out to be the modeling of f(z) as well as the estimation of f(0).

In a parametric approach, let f(z) be the unknown probability density func-
tion of perpendicular distance. A parametric method assumes a model f(z,6)
which is a member of a family of proper probability density functions of known
functional form but depend on an unknown parameter #, where # may take a
vector value and should be estimated by using the perpendicular distances. A
variety of approaches to estimate 6 will lead to f 0 =7f (O,é). A number of
parametric models have been proposed for f(z), and there is extensive literature
on the use of the maximum likelihood techniques for estimation of f(0). See for
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example, Burnham and Anderson (1976); Pollock (1978); Burnham et al.(1980)
and Buckland (1985).

While parametric methods are very powerful, they are highly dependent on
the specification of the model. As an alternative method to parametric approach,
recent works has focused on employing the nonparametric kernel method to es-
timate f(0) (Chen, 1996; Mack and Quang, 1998). Eidous (2004a) introduced
the frequency histogram and the frequency polygon methods using line transect
data. He showed that the two methods give equivalent estimators for f(0). Eidous
(2004b) proposed a simple approach to reduce the bias of the frequency histogram
estimator from G(h?) to O(h%). Beside that the frequency histogram method is
& nonparametric method which removes the model-dependence of the estimator;
it employs only the first bin (which contains £ = 0) in final estimate. That is,
apart from the choice of the bin width, the remaining data are superfluous. This
tends to highlight the rather strong assumption that the distribution of distances
needs to be uniform for line transect methods to work correctly (Buckland et al,
1993).

On one hand, this paper suggested a new estimator for f(0) based on the
frequency histogram method in the case that the shoulder condition is true, that
is, f'(0) = 0. The mathematical derivations showed that the new estimator is
very competitor for the kernel estimator in the sense that the new estimator
achieves the same orders of bias and variance as the kernel estimator. Moreover,
the simulation results -which based on the k-nearest-neighbor approach to choose
the bin width- showed that the new estimator performed better that the kernel
estimator in some cases considered. On the other hand, if we are not sure about
the existing of the shoulder conditicn, another estimator is suggested. The pro-
posed estimator combines the negative exponential and the frequency histogram
mocels. Its properties are studied through simulation technique, and the results
showed that some improvements are attained over the first estimator.

2. THE FREQUENCY HISTOGRAM ESTIMATOR

Let X1, Xs,...,X, be a random sample of size n from a probability density
function f(z). Suppose f(z) has support @ = [a,b], where a and b are usually
taken to encompass the observed data. Partition [a,b] into k non-overlapping
bins T3 = [t5,6i41) (i = 1,2,...,k) wherea =t; <ty < ... <ty =b. Let hbea
cormmoen bin width, A = ¢;41 — ¢; for all 4, and v; be the number of sample values
falling in bin 7;, where Zle v; = n. Then the frequency histogram estimate,
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f(@) of f(z) is defined by (Eidous, 2004a)

~ V’L

1 :
f(x)=E=EZITi(zj), zeT;, i=1,2,...,k
j=1

where Iz, is the indicator function of the ith bin. To implement the above esti-
mator in line transect sampling we concern with the bin that contains zero, that
is, £ = 0, because our aim is to estimate the probability density function at zero
perpendicular distance. Take a = ¢; = 0 and £, = h, then we concern with the
first bin and the frequency histogram estimate, f(0) of f(0) is given by

#(0) —ﬁ”lfihz (2.1

We note here that, while the frequency histogram estimates of f(z) is a step func-
tion the frequency polygon estimates of f(z) (Scott, 1985) is a continuous linear
function connecting the bin centers of a frequency histogram. As an estimators
for £(0), Eidous (2004a) showed that the frequency histogram and the frequency
polygon methods give the same estimator.

3. AsYyMPTOTIC PROPERTIES

In this section we derived the asymptotic mean square error (AMSE) of the
proposed estimator f(0) and compared with the AMSE for the kernel estimator
f5(0) given by (5.1). The number of perpendicular distances 4 that falls into
bin [0, k) is a binomial random variable with parameters n and p, where p is the

cell probability given by
h
= / f(u)du
0

Thus, the expected value of f(0) for given the sample size n is

B(f0) = B =1 [ st

Suppose that the underlying probability density function f(z) has a second-order
derivative. By using Taylor’s series to expand f(u) around zero. Then, if A — 0
as n — oo,

. 2
E(£(0)) = 10) + 5£/(0) + +£(0) + O(A?).
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If the shoulder condition is true then the bias of f(0) is
) 2
Bias (1(0)) = % 1(0) + O(4?),

which indicates that the asymptotic bias of histogram estimator is of order O(h?)
under assumption that the shoulder condition holds. Notice that, we use notation
O(s) to represent term as the same order of magnitude of s as explained by
Serfling (1980). If h is related to n in such a way that A — 0 and nh — oo as
n — 00, then the variance of f(0) is

Var (f(())) = p(;};p)

_ f0) -
= m +0(’I'L 1).

It is obvious that as nh — oo, a O(n~'h™!) variance is achieved. Accordingly,
the AMSE of f(0) is given by

. 4
AMSE ( f(O)) = ;’—6[ (0% + % (3.1)

where the first term in the right hand side of (3.1) is the square bias and the second
term is the variance. Under the assumption that f'(0) = 0 , Chen (1996) showed
that (as the normal kernel has been used) the asymptotic bias and variance
of the kernel estimator, f(0) -which is given by (5.1)- are h2f"(0)/2 + O(h®)
and f(0)/(nhy/7) + O(n™1) respectively, and the AMSE of is h*[f"(0))%/4 +
f(0)/(nhy/m). Comparing our results with the results obtained by Chen, we
find that the frequency histogram has the same convergence rates as the kernel
estimator. In which, for frequency histogram estimator the bias is proportional to
f"(0)/6 and the variance is proportional to f(0). While for the kernel estimator,
the bias is proportional to f"(0)/2 and the variance is proportional to f(0)/+/7.
In other words, if the two approaches use the same value of then the bias of the
histogram estimator is less than that of the kernel estimator, and the converse
is true when we talk about the variances. From viewpoint of the approximation
used, it is easy to show that the AMSE for the histogram estimator is less than
that of the kernel estimator if

nh[f"(8)]? > 1.96(0).
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4. BIN WIDTH SELECTION

To implement the new estimator in practice we need to choose the value of
the bin width, h. One of the most common methods in nonparametric estimation
is to find h that minimizing the AMSE. Consider the AMSFE as a function of h
(say z(h)), then differentiate z(h) with respect to h and equating to zero to get,

(Y ON i
h——(f”?(O)) n= /. (4.1)

The value of h given by (4.1) can be substituted back into (3.1) to give as the
minimum achievable M SE for f(0) given by

1.25 -

orlf OPPIF O P04, (42)
Correspondingly, if one chose the bandwidth parameter 4 for the kernel estimator
based on minimizing the AMSE, then the optimal value of h is h; given by

_ (SO N\
w=(yamm) 3

Substitute the value of hy into the AMSE of f;,(0) then we get the minimum
achievable MSE for fi(0) given by

P ON o, (44)
Comparing (4.2) with (4.4), the two quantities has the same convergence rates
as n — co. If n < oo then (4.4) is slightly smaller than (4.2).

Assume that the underlying probability density function f(z) to be half-
normal with scale parameter o2 then from (4.1) we find h = 1.624 6 n~'/% and
from (4.3) we find h = 0.934 6 n~'/5, where ¢ is the maximum likelihood esti-
mator for 0. A simulation study is performed (which is not stated in this paper)
based on the above two values of h and hy. The simulation results indicated that
the performances of the histogram and the kernel estimators are very similar
to each other for all models considered in Section (4.4). The simulation study
-given in Section (4.4)- is achieved by adopting the k-nearest-neighbor selector,
which does not require any assumption about the shape of f(z). Loftsgaarden and
Quesenberry (1965) introduced the k-nearest-neighbor selector given by h = T(k)s
where z(;) represents the kth order statistic in the observed sample. As to the
selection of k, a common choice is given by k = [[n°]], where 0 < ¢ < 1 and [[]]
denotes the greatest integer function. In this setting, we used ¢ = 4/5 (See for
example, Mack and Rosenblatt, 1979).
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5. TESTING THE SHOULDER CONDITION

In the above discussion we assumed that the shoulder condition is true and
then achieve a O(h?) bias. Without the shoulder condition assumption, we get a
O(h) bias which is significantly greater than O(h?). If we are not sure about the
validity of the shoulder condition, we propose to use a new estimator for f(0).
The basic idea is to use a semiparametric estimator that combines the negative
exponential model -which does not satisfy the shape criterion- and the frequency
histogram model. Gates et al. (1968) suggested the negative exponential model
to fit the perpendicular distances. The basic model is

1
flz,A) = X e,z >0.
Thus, the proposed semiparametric estimator in this case is of the form

F50) = 1 —m)£(0,}) + mf(0).

The parameter m is estimated from the data and its estimate 7 is then used in
f*(C) as the proposed estimate for f(0). The parameter f(0,A) = 1/X can be
estimated by the maximum likelihcod estimator f(0,A) = 1/, where 7 represents
the mean for the observed perpendicular distances. In this setting f(0,]) is
estimated by the unbiased estimator (n — 1)/nZ.

What is less clear in the above semiparametric model is how m should be
choosen in the estimator f*(0). The main point is that we need to force 7 to be
close to unity when the shoulder condition for the underlying model of the data
at hand holds and to be far from unity toward zero when the shoulder condition
fails to hold. In other words, a good f*(0) is expected to give high weight for the
histogram estimator when the shoulder condition holds and less weight when it

does not.
Mack (1998) propcsed a procedure for testing the shoulder condition of a
model based on line transect sampling. Assume that a random sample z1,...,z,

of perpendicular distances is drawn from a distribution with probability density
function f(z). Then the kernel estimate of f(0) is (Chen, 1996),

2 2 < x;
= —1}. 1
£+(©) nh;K(h) (5.1)
The most widely used zernel is the standard normal kernel,

exp(—x*/2)
Vor

K(z) =
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Thus as the standard normal kernel is used, f;(0) becomes

2 L 2 jop2
0) = —-:Ei/2h .
fk( ) nhm;e

Now to perform the test concerns the shoulder condition we follow Mack
(1998)’s testing method. According to him, consider the test Hy : f'(0) = 0
vs Hy : f'(0) # 0 then we reject Hp in favor of Hy if |T| > Z,/, where Z,,
represents the a/2 quantile of the standard normal distribution. The following
quantities should be computed to find the value of the test statistics 7"

roon | mbd

where f/(0) = [Fp,(2b) — 2F,(b)]/b?, b= 6 n~'/%. F,(u) is the empirical cumula-
tive distribution function defined by F,(u) = f#z; € [0,u]/n. The idea to choose
the weight parameter m is based on the p-value for the above test. The p-value
for the above test is given by

p = 2P(Z < —|T))
— 28(-T)),

where ®(z) is the standard normal distribution function. The p-value indicates
how strongly Hj is supported by the data. A large p-value indicates in some
sense that f(0) is close to the histogram estimator f(0). Thus we can use this
p-value to estimate m. Based on our preliminary simulations we suggest taking
m as 7 = p® where 0 < d < 1. In this paper we take d = 0.1 as an estimator for
d, which performed generally quite well in line transect data (several values of d
were tried and we found d = 0.1 satisfactory). Thus, the proposed semiparametric
estimator is

~

£*(0) = 1 - p*1) £ (0, %) + p*1 £(0).

6. SIMULATION STUDY

Because the exact behavior of the proposed semiparametric estimator f*(0)
is complex, we chose to study the sample properties of f*(0) in addition to the
first estimator f(0) through simulation techniques. The proposed estimators
were compared with the nonparametric kernel estimator fk(O) by adopting the
k-nearest-neighbor selector method to choose the bandwidth parameter, h. The
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reason to adopt the k-nearest-neighbor method is that, the method uses the same
values of the parameter h for the two estimators, histogram and kernel. As stated
earlier, when the value of h taken to be different based on the minimizing the
AMSE for each estimator then the performances of the two estimators are sim-
ilar, which coincide with our discussion in Section (4). The Buckland (1992)
semiparametric estimator based on & key half-normal model with Hermite poly-
nomial correction, fH(O) is also considered. Our simulation design is similar to
that of Barabesi, (2001), in which three families of models which are commonly
used as references in line transect studies were considered in the simulation. The
exponential power family (Pollock, 1978)

1 _ 1B
The hazard-rate family (Hayes and Buckland, 1983)
1 _zB
f($)=m(1—e ), >0, g>1

and the beta model (Eberhardt, 13€8)
f@)=Q1+p1 -2/, 220, 20

In our simulation design, these three families were truncated at some distance w
which required in computing of f #(C). Four models were selected from the expo-
nential power family with parameter values 8 = 1.0, 1.5, 2.0, 2.5 and correspond-
ing truncation points given by w = 5.3, 3.0, 2.5, 2.0. Four models were selected
from the hazard-rate family with parameter values § = 1.5, 2.0, 2.5, 3.0 and cor-
responding truncation points given by w = 20, 12, 8, 6. Moreover, four models
were selected from beta model with parameter values 8 = 1.5, 2.0, 2.5, 3.0 and
w = 1 for all cases. The considered models cover a wide range of perpendicular
distance probability density functicns which vary near zero from spike to flat. It
should be remarked that the truncated exponential power model with 8 =1 and
the beta model dc not satisfy the shape criterion. This choice was made in order
tc assess the robustness of the considered estimators with respect to the shape
criterion. For each model and for sample sizes n = 50, 100, 200 one thousand
samples of distances were randomly drawn. For each model and for each sample
size, Table 6.1 reports the simulated value of the relative bias ( RB )

E(f©0) -0
T e
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TABLE 6.1 RB and RME (in parentheses) for the different four estimators of f(0).

Ezponential Power Model | n fx(0) fu(0) F(0) £1(0)
50 | -0.31(0.34) | -0.28(0.31) | -0.24(0.28) | -0.19 (0.26)
B=1lw=5 100 | -0.27(0.29) | -0.27(0.29) | -0.19(0.24) | -0.16(0.21)
200 | -0.25(0.26) | -0.24(0.26) | -0.18(0.20) | -0.13(0.16)
50 | -0.18(0.22) | -0.08(0.16) | -0.10(0.21) | -0.06 (0.19)
B=15w=3 100 | -0.15(0.18) | -0.08(0.13) | -0.08(0.16) | -0.03(0.15)
200 | -0.13(0.15 | -0.08(0.11) | -0.07(0.13) | -0.02(0.11)
50 | -0.12(0.17) | 0.01(0.19) | -0.05(0.18) | -0.00(0.18)
B=2w=25 100 | -0.10(0.14) | 0.02(0.15) | -0.04(0.14) | 0.02(0.15)
200 | -0.09(0.11) | 0.02(0.11) | -0.04(0.11) | 0.02(0.12)
50 | -0.08(0.16) | 0.06(0.24) | -0.03(0.18) | 0.03 (0.19)
B=25w=2 100 | -0.06(0.11) | 0.06(0.19) | -0.02(0.13) | 0.05(0.15)
200 | -0.06(0.09) | 0.06(0.17) | -0.02(0.11) | 0.05(0.12)
Hazard Rate Model
50 | -0.11(0.23) | -0.37(0.39) | 0.02(0.24) | -0.02 (0.20)
B=15w=20 100 | -0.06(0.16) | -0.36(0.38) | 0.09(0.21) | -0.03(0.13)
200 | -0.01(0.11) | -0.36(0.38) | 0.13(0.19) | -0.06(0.10)
50 | -0.08(0.19) | -0.10(0.21) | 0.03(0.21) | 0.04 (0.18)
B=2,w=12 100 | -0.07(0.16) | -0.08(0.15) | 0.03(0.14) | 0.04(0.13)
200 | -0.03(0.09) | -0.08(0.14) | 0.05(0.12) | 0.05(0.10)
50 | -0.07(0.16) | 0.08(0.19) | 0.01(0.17) | 0.05 (0.18)
B=25w=8 100 | -0.05(0.11) | 0.07(0.15) | 0.02(0.13) | 0.05(0.14)
200 | -0.03(0.08) | 0.07(0.11) | 0.02(0.10) | 0.05(0.11)
50 | -0.06(0.15) | 0.10(0.20) | 0.00(0.17) | 0.06 (0.18)
B=3,w=6 100 | -0.03(0.10) | 0.11(0.17) | 0.02(0.13) | 0.05(0.14)
200 | -0.02(0.07) | 0.11(0.16) | 0.01(0.10) | 0.06(0.11)
Beta Model
50 | -0.21(0.25) | -0.03(0.16) | -0.15(0.23) | -0.08(0.20)
B=15w=1 100 | -0.19(0.22) | -0.04(0.12) | -0.13(0.19) | -0.07(0.16)
200 | -0.17(0.18) | -0.03(0.09) | -0.11(0.15) | -0.05(0.12)
50 | -0.22(0.26) | -0.08(0.15) | -0.15(0.23) | -0.11 (0.21)
B=20,w=1 100 | -0.21(0.23) | -0.08(0.12) | -0.15(0.20) | -0.08(0.16)
200 | -0.19(0.20) | -0.08(0.11) | -0.13(0.16) | -0.06(0.13)
50 | -0.24(0.28) | -0.13(0.18) | -0.17(0.25) | -0.12(0.20)
B=25w=1 100 | -0.22(0.24) | -0.12(0.15) | -0.15(0.20) | -0.09(0.17)
200 | -0.19(0.21) | -0.13(0.14) | -0.13(0.16) | -0.07(0.13)
50 | -0.25(0.28) | -0.15(0.19) | -0.18(0.25) | -0.13 (0.22)
B=30,w=1 100 | -0.23(0.25) | -0.16(0.18) | -0.15(0.21) | -0.10(0.17)
200 | -0.20(0.21) | -0.16(0.17) | -0.13(0.17) | -0.09(0.14)
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anc. the relative mean error ( RME )

MSE ( f(O))
RME = f(0) ’

for each considered estimator.

7. RESULTS AND CONCLUSIONS

Depending on the simulation results given in Table 6.1, several conclusions
can be drawn from examining the results in regard to model robustness (RB) and
(RME). The estimators fz(0) intreduced by Buckland (1992) is with large |RB|
for the exponential power model with 8 = 1 and for the hazard rate model with
B = 1.5. However, it is with quite small |RB)| for other cases. The estimator turn
out to be the best for the exponential power model with 8 = 1.5 and n = 50, 100
and for the beta model with § = 1.5, 2.0, with g = 2.5, 3.0 for small sample
size. Table 6.1 shows clearly that the |RB| of the histogram estimator f(0) is
generally smaller than the |RB| of the kernel estimator fr(0), which coincide with
our results in Section (3). We note here that f;(0) tends to have a downward
bias for all cases considered.

Regarding the RME, the performance of f(0) is better than fi(0) for the
exponential power model with 8 = 1.0, 1.5 and for the beta model for all com-
binations of 8 and n. The performance of the semiparametric estimator f*(0)
is more attractable, it is with the smallest |RB| among the other estimators for
almost all cases considered. In terms of RM E, the performance of f*(0) is better
than £(0) and f¢(0) in most cases considered, specially when the shoulder condi-
tion of the simulated data model fails to valid, e.g. the exponential power model
wita 8 = 1 and ‘he beta model. Moreover, the performance of f*(0) is better
than fH(O) for the exponential power model with 8 = 1.0, 2.5; for the Hazard
rate model for all values of 8 and n; and for the beta model g = 2.5, 3.0 with
and large n. Sometimes its performance is similar to that of fr(0) as in the case
of the exponential power model with g = 2.0.
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