• Title/Summary/Keyword: width control

Search Result 2,405, Processing Time 0.028 seconds

The behavior of WO3 Thin Film on NiO Addition (NiO를 첨가한 WO3 박막의 미세 구조 거동)

  • Kim Gwang-Ho;Na Dong-Myong;Choi Gwang-Pyo;Park Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.486-490
    • /
    • 2005
  • Thin films of tungsten oxide and nickel oxide were deposited on $Al_2O_3/Si-substrate$ by high vacuum thermal evaporation. The properties of microstructure and crystallinity were analyzed by SEM and XRD respectively. $WO_3$ films without addition of NiO showed polycrystalline structure after annealing at $500^{\circ}C$ for SO min. There were the cracks between the polycrystalline grains and the crack width was increased with the thickness of $WO_3$ films. The cracks in the $WO_3$ films could be controlled by an optimum deposition of NiO on $WO_3$ films and either less or more than the optimum addition fails to suppress the cracks. A process mechanism to suppress the crack has been discussed.

Development of Ring Right for Medical Purpose (메디컬 링 라이트의 개발)

  • Cheon, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.766-767
    • /
    • 2010
  • By using LED which is a light source which has been in the spotlight recently, the ring light for medical purposes was developed for shadowless shooting of local site in the affected area. The developed ring light was designed to be able to control the various quantity of light by using PWM (pulse width modulation) method, and by controlling each LED (light emitting diode) independently the regulation of color temperature and color rendering are possible. Also, the persistent light for continuous shooting of affected area and flash mode action for snap shooting are possible. In this study the response speed of momentary flash function was checked using interface circuit configured for momentary shadowless shooting of affected area.

  • PDF

Patterning self-assembled pentacene nanolayer by EUV-induced 3-dimensional polymerization

  • Hwang, Han-Na;Han, Jin-Hui;Im, Jun;Sin, Hyeon-Jun;Kim, Yeong-Deuk;Hwang, Chan-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.65-65
    • /
    • 2010
  • Extreme ultraviolet lithography (EUVL) is expected to be applied for making patterns below 32 nm in device industry. An ultrathin EUV photoresist (PR) of a few nm in thickness is required to reduce minimum feature size further. Here, we show that pentacene molecular layers can be employed as a new EUV resist for the first time. Dots and lines in nm scale are successfully realized using the new molecular resist. We clearly provide the mechanism for forming the nanopatterns with scanning photoemission microscope (SPEM), EUV interference lithography (EUV-IL), atomic force microscope (AFM), photoemission spectroscopy (PES), etc. The molecular PR has several advantages over traditional polymer EUV PRs; for example, high thermal/chemical stability, negligible outgassing, ability to control the height and width on the nanometer scale, leaving fewer residuals, no need for a chemical development process and thus reduction of chemical waste to make the nanopatterns. Besides, it could be applied to any substrate to which pentacene bonds chemically, such as $SiO_2$, SiN, and SiON, which is of importance in the device industry.

  • PDF

Inheritance Analysis of Giant Embryo Mutation Induced by T-DNA Insertion in Rice

  • Qin, Yang;Kim, Suk-Man;Park, Hee-Yeon;Sohn, Jae-Keun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Recently, giant embryonic rice and functional rice food are preferred by more consumers, which are attributed to the fact that the embryo has high concentrations of essential amino acids, fatty acids, and vitamins relative to other parts of rice grains. In this report, the heredity and stability of giant embryo mutations in successive generations were analyzed regarding a giant embryonic line, 'P47', induced by T-DNA insertion and a $F_2$ population from a cross between 'P47' and 'Junam'. The mutant lines with increases of 1.5, 1.7 and 1.8 times on embryo length, width and 100-embryo weight to those of the control showed stable inheritance across three generations. The continuous frequency distributions of embryo size in the $F_2$ population showed that the embryo size is a quantitative trait of polygene controlled. In addition, wide range of transgressive segregations of six traits affecting embryo size confirmed exchange of genetic materials and recombination between genes controlling embryo size. Five giant embryo mutant lines selected from the $F_2$ population will be used for artificial selection and improvement of giant embryonic varieties.

Quantum Confinement of Exfoliated Organic-Inorganic Hybrid Perovskite Nanocrystals (유무기 페로브스카이트 나노결정의 박리화에 의한 양자구속효과)

  • Choe, Hyeon Jeong;Choi, Jihoon
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.496-501
    • /
    • 2021
  • Metal halide perovskite nanocrystals, due to their high absorption coefficient, high diffusion length, and photoluminescence quantum yield, have received significant attention in the fields of optoelectronic applications such as highly efficient photovoltaic cells and narrow-line-width light emitting diodes. Their energy band structure can be controlled via chemical exchange of the halide anion or monovalent cations in the perovskite nanocrystals. Recently, it has been demonstrated that chemical exfoliation of the halide perovskite crystal structure can be achieved by addition of organic ligands such as n-octylamine during the synthetic process. In this study, we systematically investigated the quantum confinement effect of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanocrystals by precise control of the crystal thickness via chemical exfoliation using n-octylammonium bromide (OABr). We found that the crystalline thickness consistently decreases with increasing amounts of OABr, which has a larger ionic radius than that of CH3NH3+ ions. In particular, a significant quantum confinement effect is observed when the amounts of OABr are higher than 60 %, which exhibited a blue-shifted PL emission (~ 100 nm) as well as an increase of energy bandgap (~ 1.53 eV).

Improvement of the cyclic response of RC columns with inadequate lap splices-Experimental and analytical investigation

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • The overall seismic performance of existing pre 1960-70s reinforced concrete (RC) structures is significantly affected by the inadequate length of columns' lap-spliced reinforcement. Due to this crucial structural deficiency, the cyclic response is dominated by premature bond - slip failure, strength and stiffness degradation, poor energy dissipation capacity and low ductility. Recent earthquakes worldwide highlighted the importance of improving the load transfer mechanism between lap-spliced bars, while it was clearly demonstrated that the failure of lap splices may result in a devastating effect on structural integrity. Extensive experimental and analytical research was carried out herein, to evaluate the effectiveness and reliability of strengthening techniques applied to RC columns with lap-spliced reinforcement and also accurately predict the columns' response during an earthquake. Ten large scale cantilever column subassemblages, representative of columns found in existing pre 1970s RC structures, were constructed and strengthened by steel or RC jacketing. The enhanced specimens were imposed to earthquake-type loading and their lateral response was evaluated with respect to the hysteresis of two original and two control subassemblages. The main variables examined were the lap splice length, the steel jacket width and the amount of additional confinement offered by the jackets. Moreover, an analytical formulation proposed by Tsonos (2007a, 2019) was modified appropriately and applied to the lap splice region, to calculate shear stress developed in the concrete and predict if yielding of reinforcement is achieved. The accuracy of the analytical method was checked against experimental results from both the literature and the experimental work included herein.

Analysis of a Buck DC-DC Converter for Smart Electronic Applications (스마트기기용 강압형 DC-DC 변환기 특성해석)

  • Kang, Bo-gyeong;Na, Jae-Hun;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.373-379
    • /
    • 2019
  • Nowadays, the IoT portable electronic devices have become more useful and diverse, so they require various supply voltage levels to operate. This paper presents a DC-DC buck converter with pulse width modulation (PWM) for portable electronic devices. The proposed step-down DC-DC converter consists of passive elements such as capacitors, inductors, and resistors and an integrated chip (IC) for signal control to reduce power consumption and improves ripple voltage with the resolution. The proposed DC-DC converter is simulated and analyzed in PSPICE circuit design platform, and implemented on the prototype PCB board with a Texas Instruments LM5165 IC. The proposed buck converter is showed 92.6% of peak efficiency including a load current range of 4-10 mA, 3.29 mV of the voltage ripple at 5 V output voltage for the supply voltage 12 V. Measured and Simulated power efficiency are made good agreement with each other.

Estimation of 3D active earth pressure under nonlinear strength condition

  • Zhang, D.B.;Jiang, Y.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.515-525
    • /
    • 2019
  • The calculation of active earth pressure behind retaining wall is a typical three-dimensional (3D) problem with spatial effects. With the help of limit analysis, this paper firstly deduces the internal energy dissipation power equations and various external forces power equations of the 3D retaining wall under the nonlinear strength condition, such as to establish the work-energy balance equation. The pseudo-static method is used to consider the effect of earthquake on active earth pressure in horizontal state. The failure mode is a 3D curvilinear cone failure mechanism. For the different width of the retaining wall, the plane strain block is inserted in the symmetric plane. By optimizing all parameters, the maximum value of active earth pressure is calculated. In order to verify the validity of the new expressions obtained by the paper, the solutions are compared with previously published solutions. Agreement shows that the new expressions are effective. The results of different parameters are given in the forms of figures to analysis the influence caused by nonlinear strength parameters.

Formation of nanonet structure using polystyrene nanoparticle for high-performances TFT applications (고성능 TFT 소자 응용을 위한 폴리스티렌 나노입자를 이용한 나노 그물망 제작공정 개발)

  • Yoon, Gilsang;Lee, Junyoung;Park, Iksoo;Jin, Bo;Baek, Rock-Hyun;Shin, Hyun-jin;Lee, Jeong-soo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.36-40
    • /
    • 2018
  • We have developed a nonlithographic patterning technique using polystyrene nanoparticles to form nanonet channel structures which is promising for high-performance TFT applications. Nanoparticles assisted patterning (NAP) is a technique to form uniform nano-patterns by applying lift-off and dry etch process. Oxygen plasma treatment was used to control the diameters of nanonet hole size to realize a branch width down to 100 nm. NAP technology can be very promising to fabricate nanonet structure with advantages of lower manufacturing cost and large-area patterning capability.

Nanofluid flow and heat transfer from heated square cylinder in the presence of upstream rectangular cylinder under Couette-Poiseuille flow

  • Sharma, Swati;Maiti, Dilip K.;Alam, Md. Mahbub;Sharma, Bhupendra K.
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2019
  • A heated square cylinder (with height $A^*$) is kept parallel to the cold wall at a fixed gap height $0.5A^*$ from the wall. Another adiabatic rectangular cylinder (of same height $A^*$ and width $0.5A^*$) is placed upstream in an inline tandem arrangement. The spacing between the two cylinders is fixed at $3.0A^*$. The inlet flow is taken as Couette-Poiseuille flow based non-linear velocity profile. The conventional fluid (also known as base fluid) is chosen as water (W) whereas the nanoparticle material is selected as $Al_2O_3$. Numerical simulations are performed by using SIMPLE algorithm based Finite Volume approach with staggered grid arrangement. The dependencies of hydrodynamic and heat transfer characteristics of the cylinder on non-dimensional parameters governing the nanofluids and the fluid flow are explored here. A critical discussion is made on the mechanism of improvement/reduction (due to the presence of the upstream cylinder) of heat transfer and drag coefficient, in comparison to those of an isolated cylinder. It is observed that the heat transfer increases with the increase in the non-linearity in the incident velocity profile at the inlet. For the present range studied, particle concentration has a negligible effect on heat transfer.