• Title/Summary/Keyword: width control

Search Result 2,405, Processing Time 0.031 seconds

Design and Making of a Buck Converter For Smart Phone Wireless Charging (스마트폰 무선충전용 강압 컨버터 설계 및 제작)

  • Park, Jong-Beom;Shin, Ji-Hee;Ahn, Sung-Deuk;Lim, Hak-Jin;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.607-614
    • /
    • 2017
  • In this research, buck converter was designed and manufactured to improve the wireless charging of smartphone through PWM control technology based on micro controller. A feedback control circuit was fabricated using a voltage sensor so that the output voltage follows the reference voltage. The buck converter, 311V is output as 12V, DC voltage 12V is connected wirelessly, and 5V charge voltage is output. We also confirmed the availability of the buck converter for wireless charging of smart phone through experiments.

Stabilizing Control of DC/DC Buck Converters with Constant Power Loads in Continuous Conduction and Discontinuous Conduction Modes Using Digital Power Alignment Technique

  • Khaligh Alireza;Emadi Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.63-72
    • /
    • 2006
  • The purpose of this raper is to address the negative impedance instability in DC/DC converters. We present the negative impedance instability of PWM DC/DC converters loaded by constant power loads (CPLs). An approach to design digital controllers for DC/DC converters Is presented. The proposed method, called Power Alignment control technique, is applied to DC/DC step-down choppers operating in continuous conduction or discontinuous conduction modes with CPLs. This approach uses two predefined state variables instead of conventional pulse width modulation (PWM) to regulate the output voltage. A comparator compares actual output voltage with the reference and then switches between the appropriate states. It needs few logic gates and comparators to be implemented thus, making it extremely simple and easy to develop using a low-cost application specific integrated circuit (ASIC) for converters with CPLs. Furthermore, stability of the proposed controllers using the small signal analysis as well as the second theorem of Lyapunov is verified. Finally, simulation and analytical results are presented to describe and verify the proposed technique.

Characteristic Evaluation of Medical X-Ray Using High-Voltage Generator with Inverter System (인버터방식의 고전압 발생장치를 이용한 의료용 X선 기기의 특성평가)

  • Kim, Young-Pyo;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • Medical X-ray has been brought many changes according to the rapid development of high technology. Especially, for high-voltage generator which is the most important in X-ray generation the traditional way is to use high-voltage electric transformers primarily. However, since it is large and heavy and the ripple rate of DC high-voltage applied to X-ray tube is too big, it has a disadvantage of low X-ray production efficiency. To solve these problems, the studies about high-voltage power supply are now proceeding. At present, the high-voltage generator that generates high-voltage by making high frequency using inverter control circuit consisting of semiconductor device is mainly used. High-voltage generator using inverter has advantages in the diagnosis using X-ray including high performance with short-term use, miniaturization of power supply and ripple reduction. In this study, the X-ray high-voltage device with inverter type using pulse width modulation scheme to the control of tube voltage and tube current was designed and produced. For performance evaluation of produced device, the control signal analysis, irradiation dose change and beam quality depending on the load variation of tube voltage and tube current were evaluated.

Fuzzy Sensor Algorithm for Measuring Traffic Information (교통량검지를 위한 퍼지 센서 알고리즘)

  • 진현수;김성환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.134-141
    • /
    • 1998
  • Sometimes we need to acquire symbolic quantity of information instead of physical quantity for the output of any system. For instance we can not control traffic signal accurately through only the number of vehicles. At that case we can produce better output using symbolic quantity of road length and width and vehicle type. But it is very difficult to aggregate symbolic information from the unrelated and mutually conflicted input after calculating linear and related expression. Moreover that will take much time to produce symbolic output by the physical quantity only. In this paper we implemented the ultimate traffic control information by using fuzzy sensor algorithm and compared our results with the conventional traffic controller after studying the necessity of symbolic information in the traffic control.

  • PDF

Effect on the Human Thermoregulation of Wear Training in Air Condition (여름철 냉방 조건에서의 착의 훈련이 인체의 체온 조절 반응에 미치는 효과)

  • Kim, Mi-Kyung;Choi, Jeong-Wha;Yeom, Hee-gyong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.3
    • /
    • pp.504-515
    • /
    • 1995
  • This study was performed to investigate that wear training using thermal insulation with clothes has the effect on the human thermoregulatory response, especially on the heat tolerance. Twelve men and women in twenties wert divided into the control group, the training groups and each group except the control group had participated in wear training. The heat tolerance was assessed in all subjects who had participated in the experiment carried out in hot environment(40$\pm$1$^{\circ}C$, 50$\pm$5%RH) by such parameters as rectal temperature, skin temperature, systolic blood pressure, diastolic blond pressure, plume rate, total sweat volume, local sweat volume, subjective sensation, and the differences of heat tolerance in each group were compared. The results were as follows: In hot environment(4$0^{\circ}C$) the changing width of rectal temperature was decreased in the control and the heavy clothing group. Forehead and abdomen temperature in hot environment were significantly decreased after the training. Sweat rate was higher after the training than before. In all experimental groups, systolic and diastolic blood pries.;uses in hot environment(4$0^{\circ}C$) were significantly decreased after the training.

  • PDF

A Study on the Satisfaction of Working Uniform on Nuclear Power Plant (원자력 발전소 작업복의 착용만족도에 관한 연구)

  • Kim, Younghee;Cho, Kyungsook
    • Fashion & Textile Research Journal
    • /
    • v.18 no.5
    • /
    • pp.668-676
    • /
    • 2016
  • The purposes of this study were to investigate the satisfaction of working uniform in Nuclear Power Plant and to suggest the improvement of dissatisfaction. 150 workers in control area of Nuclear Power Plant were participated in survey and 30 questionnaires were asked and subjective description was allowed. 65%/35% Poly/Rayon coverall type working uniform was investigated for this survey which had been wearing usually and basically in control area in Nuclear Power Plant. According to the results, respondents were most highly dissatisfied with the wearing convenience aspect of current coverall among any other aspects, like textile and management. In wearing convenience aspects, wrist and ankle opening band system, the design, number and placement of pocket, waist belt design, the width of sleeve and pants, and ADR opening system were dissatisfied and requested for improvement. In textiles aspects, weight, protection from radiation materials, prevention from static electricity, moisture absorption, ventilation and flexibility/elasticity were dissatisfied and requested for improvement. In management aspect, washing uniform and size variation were dissatisfied and requested for improvement. Therefore, for more comfortable human interfaced working uniform, wearing convenience system as well as textile and management system must be compensated and should be newly developed for improving worker comfort, mobility, and productivity.

A Study on Response Improvement of a Proportional Solenoid Actuator (비례제어 솔레노이드 액추에이터의 응답성 향상 연구)

  • Yun, So Nam;Ham, Young Bog;Park, Jung Ho
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.47-52
    • /
    • 2016
  • This paper presents a control method for the performance improvement of a proportional solenoid actuator using a Pulse Width Modulation (PWM) signal. It is very difficult to obtain excellent response performance from a proportional solenoid actuator using a simple proportional controller with no PWM signal or dither because the mass and structure of a proportional solenoid actuator changes according to the application target, friction force in the proportional solenoid tube, operating force and displacement range. To solve the above problems, first, a controller with a PWM function for experimenting with attraction force characteristics was designed and manufactured. Secondly, an experimental setup for solenoid performance measurement with a force sensor and a displacement sensor was also manufactured. The attraction force characteristics according to the frequency and duty ratio variations of a PWM signal were tested and the relationships among the frequency, duty ratio, plunger mass and friction characteristics were analyzed. Finally, response characteristics improvements for proportional solenoid actuators are discussed.

The Improvement of Surface Roughness of Marine Propeller by Continuous Control of Cutter Posture in 5-Axis Machining (공구자세의 연속제어를 통한 선박용 프로펠러의 5축 가공 표면조도의 개선)

  • Son, Hwang-Jin;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2012
  • A marine propeller is designed for preventing cavitation priority. Cavitation is a phenomenon which is defined as the vibration or noise by dropping the pressure on the high-speed rotation of the propeller. There has to be a enough thrust on the low-speed rotation for preventing cavitation. Thus, it has to be considered in the increasing of the number of blade and the angle of wing to design the propeller. In addition, flow resistance will be increasing by narrowing the width between blades. So high quality surface roughness of the hub to minimize flow resistance is required. Interference problems with tool and neighboring surfaces often take place from this kind of characteristics of the propeller. During 5-Axis machining of these propellers, the excessive local interference avoidance, necessary to avoid interference, leads to inconsistency of cutter posture, low quality of machined surface. Therefore, in order to increase the surface quality, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. This study, by using a MC-space algorithm for interference avoidance and a MB-spline algorithm for continuous control, is intended to create a 5-Axis machining tool path with excellent surface quality. Also, an effectiveness is confirmed through a verification manufacturing.

Design and Implementation of an FPGA-based Real-time Simulator for a Dual Three-Phase Induction Motor Drive

  • Gregor, Raul;Valenzano, Guido;Rodas, Jorge;Rodriguez-Pineiro, Jose;Gregor, Derlis
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.553-563
    • /
    • 2016
  • This paper presents a digital hardware implementation of a real-time simulator for a multiphase drive using a field-programmable gate array (FPGA) device. The simulator was developed with a modular and hierarchical design using very high-speed integrated circuit hardware description language (VHDL). Hence, this simulator is flexible and portable. A state-space representation model suitable for FPGA implementations was proposed for a dual three-phase induction machine (DTPIM). The simulator also models a two-level 12-pulse insulated-gate bipolar transistor (IGBT)-based voltage-source converter (VSC), a pulse-width modulation scheme, and a measurement system. Real-time simulation outputs (stator currents and rotor speed) were validated under steady-state and transient conditions using as reference an experimental test bench based on a DTPIM with 15 kW-rated power. The accuracy of the proposed digital hardware implementation was evaluated according to the simulation and experimental results. Finally, statistical performance parameters were provided to analyze the efficiency of the proposed DTPIM hardware implementation method.

Investigation of the Voltage Collapse Mechanism in Three-Phase PWM Rectifiers

  • Ren, Chunguang;Li, Huipeng;Yang, Yu;Han, Xiaoqing;Wang, Peng
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1268-1277
    • /
    • 2017
  • Three-phase pulse width modulation (PWM) rectifiers are usually designed under the assumption of ideal ac power supply and input inductance. However, non-ideal circuit parameters may lead to a voltage collapse of PWM rectifiers. This paper investigates the mechanism of voltage collapse in three-phase PWM rectifiers. An analytical stability boundary expression is derived by analyzing the equilibrium point of the averaging state space model, which can not only accurately locate the voltage collapse boundary in the circuit parameter domain, but also reveal the essential characteristic of the voltage collapse. Results are obtained and compared with those of the trial-error method and the Jacobian method. Based on the analysis results, the system parameters can be divided into two categories. One of these categories affects the critical point, and other affects only the instability process. Furthermore, an effective control strategy is proposed to prevent a vulnerable system from being driven into the instability region. The analysis results are verified by the experiments.