• Title/Summary/Keyword: wide-band operation

Search Result 131, Processing Time 0.026 seconds

Real-Time Implementation of Wideband Adaptive Multi Rate (AMR-WB) Speech Codec Using TMS32OC6201 (TMS320C6201을 이용한 적응 다중 전송율을 갖는 광대역 음성부호화기의 실시간 구현)

  • Lee, Seung-Won;Bae, Keun-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1337-1344
    • /
    • 2004
  • This paper deals with analysis and real-time Implementation of a wide band adaptive multirate speech codec (AMR-WB) using a fixed-point DSP of TI's TMS320C6201. In the AMR-WB codec, input speech is divided into two frequency bands, lower and upper bands, and processed independently. The lower band signal is encoded based on the ACELP algorithm and the upper band signal is processed using the random excitation with a linear prediction synthesis filter. The implemented AMR-WB system used 218 kbytes of program memory and 92 kbytes of data memory. And its proper operation was confirmed by comparing a decoded speech signal sample-by-sample with that of PC-based simulation. Maximum required time of 5 75 ms for processing a frame of 20 ms of speech validates real-time operation of the Implemented system.

Design of a Rectangular Waveguide Antenna for Automotive Side and Rear Radar Sensor Applications (차량 측후방 레이더 센서용 직사각형 도파관 안테나 설계)

  • Lee, Jae-Min;Ryu, Hong-Kyun;Woo, Jong-Myung;Koo, Bon-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.42-52
    • /
    • 2012
  • In this paper, a waveguide antenna is designed and fabricated for side and rear radar sensor of vehicles in UWB (Ultra Wide Band) high band (center frequency : 9.5 GHz, -10 dB bandwidth : 600 MHz (6.4 %)). For the radar antenna, a probe fed rectangular waveguide antenna having simple structure and wide bandwidth is used. An important performance factor in this antenna is the isolation between transmitting (TX) and receiving (RX) waveguide antennas because this radar system uses TX and RX antennas separately. Thus the isolation between two antennas was simulated for E-plane and H-plane array. As a result, it was verified that the isolation of the H-plane array of the antennas is better than E-plane array, due to the TE10 mode. Therefore, H-plane arrayed waveguide antennas were mounted on a T-shaped radar module and performance of antennas was investigated. The -10 dB bandwidth of the TX and RX antenna mounted on T-shaped radar module was measured as 1000 MHz (10.52 %) and 1090 MHz (11.47 %) respectively and the isolation is less than -50 dB in the operation band. The peak gain is 7.65 dBi for the TX antenna and 7.26 dBi for the RX antenna and the beamwidth of H-plane of TX and RX antenna was measured as $64^{\circ}$ and $65^{\circ}$ respectively. Consequently, we verified that the proposed waveguide antenna is appropriate for a vehicle radar applications.

Technical Trends in GaN RF Electronic Device and Integrated Circuits for 5G Mobile Telecommunication (5G 이동통신을 위한 GaN RF 전자소자 및 집적회로 기술 동향)

  • Lee, J.M.;Min, B.G.;Chang, W.J.;Ji, H.G.;Cho, K.J.;Kang, D.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.53-64
    • /
    • 2021
  • As the 5G service market is expected to grow rapidly, the development of high-power, high-efficiency power amplifiers for the 5G communication infrastructure is indispensable. Gallium nitride (GaN) is attracting great interest as a key device in power devices and integrated circuits due to its wide bandgap, high carrier concentration, high electron mobility, and high-power saturation characteristics. In this study, we investigate the technology trends of Ka-band GaN radio frequency (RF) power devices and integrated circuits for operation in the millimeter-wave band of recent 5G mobile communication services. We review the characteristics of GaN RF high electron mobility transistor (HEMT) devices to implement power amplifiers operating at frequencies around 28 GHz and compare the technology of foreign companies with the device characteristics currently developed by the Electronics and Telecommunication Research Institute (ETRI). In addition, the characteristics of Ka-band GaN monolithic microwave integrated circuit (MMIC) power amplifiers manufactured using various GaN HEMT device technologies are reviewed by comparing characteristics such as frequency band, output power, and output power density of integrated circuits. In addition, by comparing the performance of the power amplifier developed by ETRI, the current status and future direction of domestic GaN power devices and integrated circuit technology will be discussed.

A SiC MOSFET Based High Efficiency Interleaved Boost Converter for More Electric Aircraft

  • Zaman, Haider;Zheng, Xiancheng;Yang, Mengxin;Ali, Husan;Wu, Xiaohua
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.23-33
    • /
    • 2018
  • Silicon Carbide (SiC) MOSFET belongs to the family of wide-band gap devices with inherit property of low switching and conduction losses. The stable operation of SiC MOSFET at higher operating temperatures has invoked the interest of researchers in terms of its application to high power density (HPD) power converters. This paper presents a performance study of SiC MOSFET based two-phase interleaved boost converter (IBC) for regulation of avionics bus voltage in more electric aircraft (MEA). A 450W HPD, IBC has been developed for study, which delivers 28V output voltage when supplied by 24V battery. A gate driver design for SiC MOSFET is presented which ensures the operation of converter at 250kHz switching frequency, reduces the miller current and gate signal ringing. The peak current mode control (PCMC) has been employed for load voltage regulation. The efficiency of SiC MOSFET based IBC converter is compared against Si counterpart. Experimentally obtained efficiency results are presented to show that SiC MOSFET is the device of choice under a heavy load and high switching frequency operation.

A Study on Network Operation Structure and DataLink Protocol for Interworking of Ground Network ALL-IP at Next-Military Satellite Communication (차기군위성통신에서 지상망 ALL-IP 연동을 위한 네트워크 운용구조 및 데이터링크 프로토콜 연구)

  • Lee, Changyoung;Kang, Kyungran;Shim, Yong-hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.826-841
    • /
    • 2018
  • The military satellite communication of ROK military, ANASIS is designed for analog data such as voice and streaming data. ANASIS cannot fully support ALL-IP communications due to its long propagation delay. The next generation satellite communication system is being designed to overcome the limitation. Next generation satellite communications system considers both high-speed and low-speed networks to support various operating environment. The low-speed satellite supports both broadband and narrow-band communication. This network works as the infrastructure for of wide-area internetworking over multiple AS's in the terrestrial network. It requires minimum satellite frequency and minimum power and works without PEP and router. In this paper, we propose a network operation structure to enable the inter-operation between high and low-speed satellite networks. In addition, we propose a data link protocol for low speed satellite networks.

A Study on Non-uniformity Correction Method through Uniform Area Detection Using KOMPSAT-3 Side-Slider Image (사이드 슬리더 촬영 기반 KOMPSAT-3 위성 영상의 균일 영역 검출을 통한 비균일 보정 기법 연구 양식)

  • Kim, Hyun-ho;Seo, Doochun;Jung, JaeHeon;Kim, Yongwoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1013-1027
    • /
    • 2021
  • Images taken with KOMPSAT-3 have additional NIR and PAN bands, as well as RGB regions of the visible ray band, compared to imagestaken with a standard camera. Furthermore, electrical and optical properties must be considered because a wide radius area of approximately 17 km or more is photographed at an altitude of 685 km above the ground. In other words, the camera sensor of KOMPSAT-3 is distorted by each CCD pixel, characteristics of each band,sensitivity and time-dependent change, CCD geometry. In order to solve the distortion, correction of the sensors is essential. In this paper, we propose a method for detecting uniform regions in side-slider-based KOMPSAT-3 images using segment-based noise analysis. After detecting a uniform area with the corresponding algorithm, a correction table was created for each sensor to apply the non-uniformity correction algorithm, and satellite image correction was performed using the created correction table. As a result, the proposed method reduced the distortion of the satellite image,such as vertical noise, compared to the conventional method. The relative radiation accuracy index, which is an index based on mean square error (RA) and an index based on absolute error (RE), wasfound to have a comparative advantage of 0.3 percent and 0.15 percent, respectively, over the conventional method.

Design and Realization UHF Power Amplifier for Air Traffic Control (항공교통관제용 UHF대역 전력 증폭기 설계 및 구현)

  • Kang, Suk-Youb;Song, Byoung-Jin;Park, Wook-Ki;Go, Min-Ho;Park, Hyo-Dal
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • In this paper, the 25W power amplifier for UHF band radio transceiver has been designed and realized. The power amplifier was composed of drive, power amplifier and control stages. Feedback topology and coaxial line baluns were used for wide band operation. The VDMOS, which has reliable performance for linearity and efficiency, was used for power device and designed to operate as push-pull amplification at Class AB Bias. The power amplifier designed in such a way was found to show stable AM modulation performance when voice signal was detected at the gate stage, with being designed and realized to meet output specifications of commercial air traffic control transmitter.

  • PDF

A Design of a VCO for an Advance Warning System of the Vehicle′s Speed Limitation (차량 속도 제한 사전 경보기용 전압 제어 발진기 설꼐)

  • 김동현;최익권
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1075-1081
    • /
    • 2004
  • In this paper, a VCO of a general advance warning system for vehicle's speed limitation in the X-band used in Japan is designed using a small signal scattering coefficient of PHEMT. A varactor diode that wide tuning range and series resistance 0 H is used for designing the VCO and -85 dBc/Hz of phase noise at 10 kHz of offset frequency is obtained by adjusting the reflection coefficient between the micro-strip line and the varactor device which determines transistor's operation voltage and resonant frequency, In addition +4.5 dBm of basic frequency signal output level and -25.6 dEc of the second harmonic constraint are acquired. Sample that produce in this paper could confirm that more excellent special quality appears than existing products in sensitivity.

Wide Band Microstrip line-to-Rectangular Waveguide Transition Using a Radial Probe for Millimeter-wave Applications (밀리미터파 응용을 위해 Radial 프로브 마이크로 스트립-웨이브 가이드 광대역 천이기)

  • Lee, Young Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.43-47
    • /
    • 2015
  • In this work, a broadband microstrip (MSL) - to - waveguide (WR12) transition has been presented for millimeter-wave module applications. For improvement of a bandwidth, the radial MSL electrical-probe is designed on the low-loss organic dielectric substrate. The designed and tested characteristics of the proposed transition are characterized in terms of an insertion and return loss. Considering the loss contribution of the cable adapter and waveguide transition for the measurement, the proposed transition loss can be analyzed as -1.88 and -2.01 dB per a transition at 70 and 80 GHz, respectively. The bandwidth of the proposed transition for reflection at -10 dB is 26 GHz at all test frequencies from 67 to 95 GHz. Compared to the state-of-the-art results, improvement of 8.3 % is achieved for the operation bandwidth.

A RF Frong-End CMOS Transceiver for 2㎓ Dual-Band Applications

  • Youn, Yong-Sik;Kim, Nam-Soo;Chang, Jae-Hong;Lee, Young-Jae;Yu, Hyun-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.147-155
    • /
    • 2002
  • This paper describes RF front-end transceiver chipset for the dual-mode operation of PCS-Korea and IMT-2000. The transceiver chipset has been implemented in a $0.25\mutextrm{m}$ single-poly five-metal CMOS technology. The receiver IC consists of a LNA and a down-mixer, and the transmitter IC integrates an up-mixer. Measurements show that the transceiver chipset covers the wide RF range from 1.8GHz for PCS-Korea to 2.1GHz for IMT-2000. The LNA has 2.8~3.1dB NF, 14~13dB gain and 5~4dBm IIP3. The down mixer has 15.5~16.0dB NF, 15~13dB power conversion gain and 2~0dBm IIP3. The up mixer has 0~2dB power conversion gain and 6~3dBm OIP3. With a single 3.0V power supply, the LNA, down-mixer, and up-mixer consume 6mA, 30mA, and 25mA, respectively.