• Title/Summary/Keyword: wide frequency range

Search Result 995, Processing Time 0.028 seconds

A Wide Range PLL for 64X CD-ROMs & l0X DVD-ROMs (64배속 CD-ROM 및 10배속 DVD-ROM용 광대역 위상 고정 루프)

  • 진우강;이재신;최동명;이건상;김석기
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.340-343
    • /
    • 1999
  • In this paper, we propose a wide range PLL(Phase Locked Loop) for 64X CD-ROMs & l0X DVD-ROMs. The frequency locking range of the Proposed PLL is 75MHz~370MHz. To reduce jitters caused by large VCO gain and supply voltage noise, a new V-I converter and a differential delay cell are used in 3-stage ring VCO, respectively. The new V-I converter has a 0.6V ~ 2.5V wide input range. In addition, we propose a new charge pump which has perfect current matching characteristics for the sourcing/sinking current. This new charge pump improves the locking time and the locking range of the PLL. This Chip is implemented in 0.25${\mu}{\textrm}{m}$ CMOS process. It consumes 55㎽ in worst case with a single 2.5V power supply.

  • PDF

Development of a Fatigue Damage Model of Wideband Process using an Artificial Neural Network (인공 신경망을 이용한 광대역 과정의 피로 손상 모델 개발)

  • Kim, Hosoung;Ahn, In-Gyu;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.88-95
    • /
    • 2015
  • For the frequency-domain spectral fatigue analysis, the probability density function of stress range needs to be estimated based on the stress spectrum only, which is a frequency domain representation of the response. The probability distribution of the stress range of the narrow-band spectrum is known to follow the Rayleigh distribution, however the PDF of wide-band spectrum is difficult to define with clarity due to the complicated fluctuation pattern of spectrum. In this paper, efforts have been made to figure out the links between the probability density function of stress range to the structural response of wide-band Gaussian random process. An artificial neural network scheme, known as one of the most powerful system identification methods, was used to identify the multivariate functional relationship between the idealized wide-band spectrums and resulting probability density functions. To achieve this, the spectrums were idealized as a superposition of two triangles with arbitrary location, height and width, targeting to comprise wide-band spectrum, and the probability density functions were represented by the linear combination of equally spaced Gaussian basis functions. To train the network under supervision, varieties of different wide-band spectrums were assumed and the converged probability density function of the stress range was derived using the rainflow counting method and all these data sets were fed into the three layer perceptron model. This nonlinear least square problem was solved using Levenberg-Marquardt algorithm with regularization term included. It was proven that the network trained using the given data set could reproduce the probability density function of arbitrary wide-band spectrum of two triangles with great success.

An Effect Absorption Property of Compound Absorption Structure on the Membranous and the Back Resonator type (표면재 및 배후 다공질재의 유형에 따른 복합 흡음구조의 흡음특성)

  • 김태훈;주문기;오양기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.65-71
    • /
    • 2001
  • Absorbers such as porous materials and panels have limited absorption characteristics to some frequency bands. There is a need for absorbers with high absorption coefficients in a wide frequency ranges to make good response of room acoustics. This is almost impossible for a single absorption material. Composite absorption structure with cover, porous material. and air gap is known to have those wide frequency characteristics. In this basis. various composite absorption structures are measured and investigated as wide range absorption structures. Measurements are performed according to an international standard, ISO 354. Various surface types such as wooden slits, wood/steel perforated panels are selected as surface covers, and also various porous materials such as polyurethanes, polyesters, and glasswools are used inside the covers. Result shows that the area of void parts of surface materials is critical to high frequency absorptions, and thickness of air gaps are critical factor of the peak absorptions of low frequency bands.

  • PDF

A new broadband energy harvester using propped cantilever beam with variable overhang

  • Usharani, R.;Uma, G.;Umapathy, M.;Choi, S.B.
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.567-576
    • /
    • 2017
  • Design of piezoelectric energy harvester for a wide operating frequency range is a challenging problem and is currently being investigated by many researchers. Widening the operating frequency is required, as the energy is harvested from ambient source of vibration which consists of spectrum of frequency. This paper presents a new technique to increase the operating frequency range which is achieved by designing a harvester featured by a propped cantilever beam with variable over hang length. The proposed piezoelectric energy harvester is modeled analytically using Euler Bernoulli beam theory and the effectiveness of the harvester is demonstrated through experimentation. The results from analytical model and from experimentation reveal that the proposed energy harvester generates an open circuit output voltage ranging from 36.43 V to 11.94 V for the frequency range of 27.24 Hz to 48.47 Hz. The proposed harvester produces continuously varying output voltage and power in the broadened operating frequency range.

Frequency Controllable Wide-Beam Ultrasonic Transducer with Transverse Mode (압전 횡효과를 이용한 무지향성 주파수가변 초음파트랜스듀서)

  • Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol;Kang, Kab-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.417-423
    • /
    • 2004
  • In order to obtain wide-beam characteristics and variable resonant frequency of a ultrasonic transducer for the array source, an electrode of transverse mode piezoelectric vibrator is divided, and an electronic inductance is connected to the divided electrodes. The electronic inductance is made by GIC (General Impedance Converter) circuit. Because the GIC circuit is made of OP-Amps and other passive elements, the value of the inductance can be selected easily. As the results, the electronic inductance is variable in the range from 0.2 mH to 1.2 mH. Using the inductance, the resonance frequency of the transducer can be changed in the range from 73 kHz to 86 kHz. In the directivity of the transducer, it is confirmed that the beam width of the transducer is wider than $80^{\circ}$ at -3 dB in water.

Design of a 40 GHz CMOS Phase-Locked Loop Frequency Synthesizer Using Wide-Band Injection-Locked Frequency Divider (광대역 주입동기식 주파수 분주기 기반 40 GHz CMOS PLL 주파수 합성기 설계)

  • Nam, Woongtae;Sohn, Jihoon;Shin, Hyunchol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.717-724
    • /
    • 2016
  • This paper presents design of a 40 GHz CMOS PLL frequency synthesizer for a 60 GHz sliding-IF RF transceiver. For stable locking over a wide bandwith for a injection-locked frequency divider, an inductive-peaking technique is employed so that it ensures the PLL can safely lock across the very wide tuning range of the VCO. Also, Injection-locked type LC-buffer with low-phase noise and low-power consumption is added in between the VCO and ILFD so that it can block any undesirable interaction and performance degradation between VCO and ILFD. The PLL is designed in 65 nm CMOS precess. It covers from 37.9 to 45.3 GHz of the output frequency. and its power consumption is 74 mA from 1.2 V power supply.

A 0.5-2.0 GHz Dual-Loop SAR-controlled Duty-Cycle Corrector Using a Mixed Search Algorithm

  • Han, Sangwoo;Kim, Jongsun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.152-156
    • /
    • 2013
  • This paper presents a fast-lock dual-loop successive approximation register-controlled duty-cycle corrector (SARDCC) circuit using a mixed (binary+sequential) search algorithm. A wider duty-cycle correction range, higher operating frequency, and higher duty-cycle correction accuracy have been achieved by utilizing the dual-loop architecture and the binary search SAR that achieves the fast duty-cycle correcting property. By transforming the binary search SAR into a sequential search counter after the first DCC lock-in, the proposed dual-loop SARDCC keeps the closed-loop characteristic and tracks variations in process, voltage, and temperature (PVT). The measured duty cycle error is less than ${\pm}0.86%$ for a wide input duty-cycle range of 15-85 % over a wide frequency range of 0.5-2.0 GHz. The proposed dual-loop SARDCC is fabricated in a 0.18-${\mu}m$, 1.8-V CMOS process and occupies an active area of $0.075mm^2$.

Design of Wide - range Clock and Data Recovery Circuit based Dual-loop DLL using 2-step DPC (2-step DPC를 이용한 이중루프 DLL기반의 광대역 클록 데이터 복원회로 설계)

  • Jung, Ki-Sang;Kim, Kang-Jik;Ko, Gui-Han;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.324-328
    • /
    • 2012
  • A recovered jitter of CDR(Clock and Data Recovery) Circuit based on Dual-loop DLL(Delay Locked Loop) for data recovery in high speed serial data communication is changed by depending on the input data and reference clock frequency. In this paper, 2-step DPC which has constant jitter performance for wide-range input frequency is proposed. The designed prototype 2-step CDR using proposed 2-step DPC has operation frequency between 200Mbps and 4Gbps. Average delay step of 2-step DPC is 10ps. Designed CDR circuit was tested with 0.18um CMOS process.

Self-Oscillating Switching Technique for Current Source Parallel Resonant Induction Heating Systems

  • Namadmalan, Alireza;Moghani, Javad Shokrollahi
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.851-858
    • /
    • 2012
  • This paper presents resonant inverter tuning for current source parallel resonant induction heating systems based on a new self oscillating switching technique. The phase error is suppressed in a wide range of operating frequencies in comparison with Phase Locked Loop (PLL) techniques. The proposed switching method has the capability of tuning under fast changes in the resonant frequency. According to this switching method, a multi-frequency induction heating (IH) system is proposed by using a single inverter. In comparison with multi-level inverter based IH systems, the advantages of this technique are its simple structure, better transients and wide range of operating frequencies. A laboratory prototype was built with an operating frequency of 35 kHz to 55 kHz and 300 W of output power. The performance of the IH system shows the validity of the new switching technique.