• Title/Summary/Keyword: whole grain

Search Result 329, Processing Time 0.025 seconds

Physical Properties of Grain (곡물(糓物)의 물리적(物理的) 특성(特性)에 관(關)한 연구(硏究))

  • Kim, Man Soo;Koh, Hak Kyun
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 1981
  • The physical properties of grain are very important for the design of handling, sorting, processing, and storage system. On the physical properties of grain, volume, bulk density, true density, specific gravity, and porosity arc the major factors affecting the thermal properties of grain. This study was conducted to determine experimentally the above physical properties of rough rice (3 Japonica-type, 3 Indica-type) and barley (covered, naked) as a function of moisture content ranged from about 10% to 25% (w.b). The results of this study are summarized as follows; 1. The volume of grain kernel increased with moisture content for both rice and barley. The volume of those grain kernel was in the range of $2.2068{\times}10^{-8}{\sim}3.3960{\times}10^{-8}m^3$ at the moisture content of 14%. 2. The bulk density of rice increased linearly with moisture content for Japonica-type rough rice and quadratically for Indica-type rough rice, but the bulk density of barley decreased linearly with moisture content. The bulk density of the grain was in the range of 501.14~689.13kg/$m^3$ at the moisture content of 14%. 3. The true density of whole grain decreased linearly with moisture content, and was in the range of 1019.49~1139.75kg/$m^3$ at the moisture content of 14%. 4. The porosity of rice decreased linearly with moisture content for Japonica-type rough rice and quadratically for Indica-type rough rice, but the porosity of barley increased linearly with moisture content. The porosity of the grain was in the range of 39.51~50.83% at the moisture content of 14%. 5. The regression equations of the physical properties such as volume, bulk density, true density, and porosity of the grain were determined as a function of moisture content.

  • PDF

THE MICROSTRUCTURE OF Pb-DOPED SOLIDIFIED WASTE FORMS USING PORTLAND CEMENT AND CALCITE

  • Yoo, Hee-Chan;Lee, Dong-Jin
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.54-61
    • /
    • 2006
  • An electron probe microanalysis (EPMA) investigation can provide quantitative and qualitative insight into the nature of the surface and bulk chemistry on solidified waste forms(SWF). The proportion of Pb in grain areas is below 0.3 wt. %, and the proportion near the border of the grain slightly increases to 0.98 wt. % but in the inter-particle areas farther from the grain, the concentration of Pb markedly increases. It is apparent that very little Pb diffuses into the tricalcium silicate($C_3S$) particles and most of the Pb exists as precipitates of sulfate, hydroxide, and carbonate in the cavity areas between $C_3S$ grains. Calcite additions on Pb-doped SWF are also observed to induce deeper incorporation of lead into the cement grains with EPMA line-analysis of cross-sections of cement grains. The line-analysis reveals the presence of $0.2{\sim}5$ weight % Pb over $5\;{\mu}m$ from cement grain boundaries. In the inter-particle areas, the ratio of Ca, Si, Al and S to Pb is relatively similar even at some distance from the grain border and the Pb (wt. %) ratio is reasonably constant throughout the whole inter-particles area. It is apparent that the enhanced development of C-S-H on addition of calcite can increasingly absorbs lead species within the silica matrix.

Protein and Arabinoxylan Contents of Whole Grains from Wheat Genetic Resources Cultivated in Korea (국내에서 재배된 밀 유전자원의 통밀에서 단백질 및 아라비노자일란 함량 분석)

  • Yang, Jinwoo;Park, Jinhee;Son, Jae-Han;Kim, Kyeong-Hoon;Kim, Kyeong-Min;Jeong, Han-Yong;Kang, Chon-Sick;Son, Ji-Young;Park, Tae-Il;Choi, Changhyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.29-36
    • /
    • 2021
  • Recently, phytochemicals in whole grains have received increasing attention because the increased consumption of whole grains and whole grain products has been associated with a reduced risk of chronic diseases. Among the phytochemicals in whole wheat, arabinoxylan influences various physiological activities and can aid the treatment of numerous health conditions, either directly or indirectly. In this study, 614 wheat germplasms, collected from the world, were cultivated in 2018 and harvested in 2019 in South Korea. The qualities of these whole grains, including seed protein content, were evaluated using the NIR spectrophotometric method, and arabinoxylan content was determined using enzymatic methods. The ash content was 0.36 to 2.80% and protein content was 7.66 to 20. The SDS-sedimentation for gluten complex ability ranged from 26.85 to 80.63 mL, and protein content showed a high correlation with SDS-sedimentation in the germplasms. Verify the result of the enzymatic method of arabinoxylan, the reliability of the experimental method was determined through repeatability, reproducibility, and recovery. The average value of the 614 resources was 51.64 mg/g of whole grain, and when classified according to the country of origin, the South Korean origin resources tended to have a higher content compared to the genetic resources of other countries. These results are expected to be used as basic data for setting standards for whole grain quality in wheat breeding systems.

Effect of corn grain particle size on ruminal fermentation and blood metabolites of Holstein steers fed total mixed ration

  • Kim, Do Hyung;Choi, Seong Ho;Park, Sung Kwon;Lee, Sung Sill;Choi, Chang Weon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.80-85
    • /
    • 2018
  • Objective: This study was conducted to investigate the effect of corn grain particle size on ruminant fermentation and blood metabolites in Holstein steers fed total mixed ration (TMR) as a basal diet to explain fundamental data of corn grain for cattle in Korea. Methods: Four ruminally cannulated Holstein steers (body weight $592{\pm}29.9kg$) fed TMR as a basal diet were housed individually in an auto temperature and humidity modulated chamber ($24^{\circ}C$ and 60% for 22 h/d). Treatments in a $4{\times}4$ Latin square design were TMR only (control), TMR with whole corn grain (WC), coarsely ground corn grain (CC), and finely ground corn grain (FC), respectively. The corn feeds substituted for 20% energy intake of TMR intake. To measure the ruminal pH, ammonia N, and volatile fatty acids (VFA), ruminal digesta was sampled through ruminal cannula at 1 h intervals after the morning feeding to determine ruminal fermentation characteristics. Blood was sampled via the jugular vein after the ruminal digesta sampling. Results: There was no difference in dry matter (DM) intake between different corn particle size because the DM intake was restricted to 1.66% of body weight. Different corn particle size did not change mean ammonia N and total VFA concentrations whereas lower (p<0.05) ruminal pH and a ratio of acetate to propionate, and higher (p<0.05) propionate concentration were noted when the steers consumed CC compared with WC and FC. Concentration of blood metabolites were not affected by different particle size of corn grain except for blood triglyceride concentration, which was significantly (p<0.05) increased by FC. Conclusion: Results indicate that feeding CC may increase feed digestion in the rumen, whereas the FC group seemed to obtain inadequate corn retention time for microbial degradation in the rumen.

Chemical Properties and Fatty Acid Composition of Layers of Rice Grain (미립(米粒)의 층별 일반성분 및 지방산 조성)

  • 오만진;손종록;금종화;이미현;정재홍
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.3
    • /
    • pp.497-503
    • /
    • 1996
  • In order to obtain basic data for the preparation of rice flour, chemical properties of grain layers were compared using Chucheongbyeo and Samgangbyeo, which are Japonica and Tongil type rice, respectively. The amylose contents of L6(center) layer in two different type of rice were the highest among 6 layers of rice grain tested. Reduction in amylose content was observed as the layer reached the surface, resulting in the lowest amylose content in the L0 layer. Amylose contents of L6 layer of Chucheongbyeo and Sangangbyeo were 3 and 2.2 times higher than those of L1 layer, respectively. Crude protein content of the L2 layer was the highest among 6 layers of rice grain tested and 2.2~2.5 times higher than that of whole milled rice. Crude fat content of grain layer was reduced as reaching the center layer. The crude fat contents of L6 layer of grain were 0.21% and 0.25% in Chucheongbyeo and Samgangbyeo, respectively. Most of free and bound lipids in L0 layer of two different rices were 69 : 31 and 79.5 : 20.5, respectively. Bound lipid content of grain layers increased as reaching the center layer. Major fatty acids in free lipids of both cultivars were linoleic acid, oleic acid, and palmitic acid. Linoleic acid content was higher than oleic acid in Chucheongbyeo, but oleic acid content was higher in Samgangbyeo. Palmitic and myristic acid contents of Chucheongbyeo were higher than those of Samgangbyeo, but stearic and linolenic acid contents were lower than those of Samgangbyeo.

  • PDF

Analysis of Enhancement Effect and Attachment Ability of Beneficial Intestinal Microflora in Puffed Grain Foods Using Confocal Laser Scanning Microscopy (곡물 소재 팽화식품에서 장내 유익균의 증진 효과 분석 및 공초점 현미경을 이용한 부착능 평가)

  • Jeong, Myeong-Kyo;Oh, Do-Geon;Kwon, Oh-Sung;Jeong, Jun-Young;Lee, Ym-Shik;Kim, Kwang-Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.9
    • /
    • pp.1071-1080
    • /
    • 2017
  • This study examined the adhesiveness of beneficial intestinal bacteria to whole-grains using confocal scanning laser microscopy (CLSM), to demonstrate the prebiotic effects of whole-grains, and to develop prebiotic puffed snacks with these whole-grains. CLSM has been used to observe the adhesiveness of Lactobacillus acidophilus, which belongs to beneficial intestinal bacteria, to whole-grain powders using optical sectioning techniques. The enhanced effects on the growth of beneficial intestinal bacteria with the hot water grain extract were verified using an indirect count method. Finally, a puffed snack was produced with the prebiotic effect and the quality was evaluated by checking the chromaticity and degree of hardness. As a result, L. acidophilus exhibited adhesive ability to whole-grain powders and growth of selected beneficial intestinal bacteria were improved significantly. The Hunter L value of the developed puffed snack increased when seasoning was added. The hardness of the puffed snack with seasoning was higher than that of the control. The results of a sensory evaluation showed that the puffed snack with seasoning was highly rated in the overall preference compared to the control.

Effect of Variety and Stage of Maturity on Nutritive Value of Whole Crop Rice Silage for Ruminants: In situ Dry Matter and Nitrogen Degradability and Estimation of Metabolizable Energy and Metabolizable Protein

  • Islam, M.R.;Ishida, M.;Ando, S.;Nishida, T.;Yoshida, N.;Arakawa, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1541-1552
    • /
    • 2004
  • The effect of eight varieties of whole crop rice silage (WCRS) harvested at four stages of maturity were investigated for in situ DM and N degradability, ME and MP yield and content in an 8${\times}$4 factorial experiment. The varieties were Akichikara, Fukuhibiki, Habataki, Hamasari, Hokuriku 168, Kusanami, Tamakei 96 and Yumetoiro. Hamasari and Kusanami were forage varieties while all others were grain varieties. Forages were harvested on 10, 22, 34 and 45 days after flowering, ensiled and kept in airtight condition. Between 45 and 49 days after ensiling, silages opened, chopped and milled green to pass through 4 mm screen. Samples were incubated in the rumen of two Holstein steers for 0, 3, 6, 9, 12, 24, 48, 72 and 96 h over eight 4 d periods. Bags at 0 h were washed in a washing machine. Variety affected DM (p<0.001: except 'a+b', p<0.01) and N (p<0.001) degradability characteristics of WCRS. Stages of maturity also affected DM (p<0.001: except 'a+b', p<0.05; 'c', p<0.08) and N (p<0.01: except 'c', p<0.05) degradability characteristics of WCRS. Interactions between variety and stages of maturity occurred in all DM (p<0.001) and N (p<0.001) degradability characteristics except (p>0.05) for DM 'b', DM 'c', DM 'a+b' nd N 'c'. Effective DM degradability was higher in grain varieties than forage varieties and degradability increased with maturity. N availability decreased only slightly with maturity. Variety was the key factor for N degradability characteristics of WCRS since variety accounted for most of the total variation for degradability characteristics. Both ME and MP content and yield were higher (p<0.001) in grain varieties, and they increased (p<0.001) with the maturity. The results clearly demonstrated that the grain type varieties contained higher ME and MP content than forage varieties, and increase in maturity increases both ME and MP content of WCRS.

Transferring Calibrations Between on Farm Whole Grain NIR Analysers

  • Clancy, Phillip J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1210-1210
    • /
    • 2001
  • On farm analysis of protein, moisture and oil in cereals and oil seeds is quickly being adopted by Australian farmers. The benefits of being able to measure protein and oil in grains and oil seeds are several : $\square$ Optimize crop payments $\square$ Monitor effects of fertilization $\square$ Blend on farm to meet market requirements $\square$ Off farm marketing - sell crop with load by load analysis However farmers are not NIR spectroscopists and the process of calibrating instruments has to the duty of the supplier. With the potential number of On Farm analyser being in the thousands, then the task of calibrating each instrument would be impossible, let alone the problems encountered with updating calibrations from season to season. As such, NIR technology Australia has developed a mechanism for \ulcorner\ulcorner\ulcorner their range of Cropscan 2000G NIR analysers so that a single calibration can be transferred from the master instrument to every slave instrument. Whole grain analysis has been developed over the last 10 years using Near Infrared Transmission through a sample of grain with a pathlength varying from 5-30mm. A continuous spectrum from 800-1100nm is the optimal wavelength coverage fro these applications and a grating based spectrophotometer has proven to provide the best means of producing this spectrum. The most important aspect of standardizing NIB instruments is to duplicate the spectral information. The task is to align spectrum from the slave instruments to the master instrument in terms of wavelength positioning and then to adjust the spectral response at each wavelength in order that the slave instruments mimic the master instrument. The Cropscan 2000G and 2000B Whole Grain Analyser use flat field spectrographs to produce a spectrum from 720-1100nm and a silicon photodiode array detector to collect the spectrum at approximately 10nm intervals. The concave holographic gratings used in the flat field spectrographs are produced by a process of photo lithography. As such each grating is an exact replica of the original. To align wavelengths in these instruments, NIR wheat sample scanned on the master and the slave instruments provides three check points in the spectrum to make a more exact alignment. Once the wavelengths are matched then many samples of wheat, approximately 10, exhibiting absorbances from 2 to 4.5 Abu, are scanned on the master and then on each slave. Using a simple linear regression technique, a slope and bias adjustment is made for each pixel of the detector. This process corrects the spectral response at each wavelength so that the slave instruments produce the same spectra as the master instrument. It is important to use as broad a range of absorbances in the samples so that a good slope and bias estimate can be calculated. These Slope and Bias (S'||'&'||'B) factors are then downloaded into the slave instruments. Calibrations developed on the master instrument can then be downloaded onto the slave instruments and perform similarly to the master instrument. The data shown in this paper illustrates the process of calculating these S'||'&'||'B factors and the transfer of calibrations for wheat, barley and sorghum between several instruments.

  • PDF

Classification of 31 Korean Wheat (Triticum aestivum L.) Cultivars Based on the Chemical Compositions

  • Choi, Induck;Kang, Chon-Sik;Lee, Choon-Kee;Kim, Sun-Lim
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2016
  • Whole grain wheat flour (WGWF) is the entire grain (bran, endosperm, and germ) milled to make flour. The WGWF of 31 Korean wheat (Triticum aestivum L.) cultivars were analyzed for the chemical compositions, and classified into groups by hierarchical cluster analysis (HCL). The average composition values showed a substantial variation among wheat varieties due to different wheat varieties. Wheat cv. Shinmichal1 (waxy wheat) had the highest ash, lipid, and total dietary fiber contents of 1.76, 3.14, and 15.49 g/100 g, respectively. Using HCL efficiently classified wheat cultivars into 7 clusters. Namhae, Sukang, Gobun, and Joeun contained higher protein values (12.88%) and dietary fiber (13.74 %). Regarding multi-trait crop breeding, the variation in chemical compositions found between the clusters might be attributed to wheat genotypes, which was an important factor in accumulating those chemicals in wheat grains. Thus, once wheat cultivars with agronomic characteristics were identified, those properties might be included in the breeding process to develop a new variety of wheat with the trait.

Study for grain-filling of rice using 13C labeling flow-metabolome analysis

  • Okamura, Masaki;Hirai, Masami Yokota;Sawada, Yuji;Okamoto, Mami;Arai-Sanoh, Yumiko;Yoshida, Hiroe;Mukouyama, Takehiro;Adachi, Shunsuke;Fushimi, Erina;Yabe, Shiori;Nakagawa, Hiroshi;Kobayashi, Nobuya;Kondo, Motohiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.59-59
    • /
    • 2017
  • Rice (Oryza sativa L.) is the most important crop and its yield must be improved to feed the increasing global population. Recently developed high-yielding varieties with extra-large sink capacity often have a problem in unstable grain-filling. Therefore, understanding limiting factors for improving grain-filling and controlling them are essential for further improvement of rice grain yield. However, since grain-filling rate was determined by complex sink-source balance, the ability of grain-filling was very difficult to evaluate. Source ability for 'grain' was not only determined by the ability of carbon assimilation in leaves, but also that of carbon translocation from leaves to panicles. Sink strength was determined by the complex carbon metabolism from sucrose degradation to starch synthesis. Hence, to evaluate the grain-filling ability and determine its regulatory steps, the whole picture of carbon flow from photosynthesis at leaves to starch synthesis at grains must be revealed in a metabolite level. In this study, the yield and grain growth rate of three high-yielding varieties, which show high sink capacity commonly, were compared. Momiroman showed lower grain filling rate and slower grain growth rate than the other varieties, Hokuriku 193 and Tequing. To clarify the limiting point in the carbon flow of Momiroman, $CO_2$ labeled by stable isotope ($^{13}C$) was fed to three varieties during ripening period. The ratio of $^{13}C$ left in the stem was higher in Momiroman 24 hours after feeding, suggesting inefficient carbon translocation of Momiroman. More interestingly, $^{13}C$ translocation from soluble fraction to insoluble one in the grain seemed to be slower in Momiroman. To get the further insight in a metabolite level, we are now trying the $^{13}C$ labeling metabolome analysis in the developing grains.

  • PDF