• Title/Summary/Keyword: white rot fungus

Search Result 223, Processing Time 0.024 seconds

Physiological Regulation of an Alkaline-Resistant Laccase Produced by Perenniporia tephropora and Efficiency in Biotreatment of Pulp Mill Effluent

  • Teerapatsakul, Churapa;Chitradon, Lerluck
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.260-268
    • /
    • 2016
  • Regulation of alkaline-resistant laccase from Perenniporia tephropora KU-Alk4 was proved to be controlled by several factors. One important factor was the initial pH, which drove the fungus to produce different kinds of ligninolytic enzymes. P. tephropora KU-Alk4 could grow at pH 4.5, 7.0, and 8.0. The fungus produced laccase and MnP at pH 7.0, but only laccase at pH 8.0. The specific activity of laccase in the pH 8.0 culture was higher than that in the pH 7.0 culture. At pH 8.0, glucose was the best carbon source for laccase production but growth was better with lactose. Low concentrations of glucose at 0.1% to 1.0% enhanced laccase production, while concentrations over 1% gave contradictory results. Veratryl alcohol induced the production of laccase. A trace concentration of copper ions was required for laccase production. Biomass increased with an increasing rate of aeration of shaking flasks from 100 to 140 rpm; however, shaking at over 120 rpm decreased laccase quantity. Highest amount of laccase produced by KU-Alk4, 360 U/mL, was at pH 8.0 with 1% glucose and 0.2 mM copper sulfate, unshaken for the first 3 days, followed by addition of 0.85 mM veratryl alcohol and shaking at 120 rpm. The crude enzyme was significantly stable in alkaline pH 8.0~10.0 for 24 hr. After treating the pulp mill effluent with the KU-Alk4 system for 3 days, pH decreased from 9.6 to 6.8, with reduction of color and chemical oxygen demand at 83.2% and 81%, respectively. Laccase was detectable during the biotreatment process.

Diagnosis of Phythopthora sp. and Its Concentration by Potato Slices in Series Culture Soils.

  • Lee, Jung-Sup;Park, Jong-Hwan;Han, Kyeong-Suk;Park, Young-Mun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.129.2-130
    • /
    • 2003
  • Tomato soil pathogens(Phythopthora spp.) analyed high rates in series culture soil and existed in culture parts. To make a diagnosis of Phythopthora sp. and Its concentration, potato slices were manufactured to a round shape(2.5cm) or retangular form(1x4cm). and then, The potato slices dipped into diagnostic reagents with an antibiotic substance for 2∼4hours. Potato slices treated with a few reagents varied into 15cm depths in innoculated soils for 24hrs. Mycelium of the Phytophthora root rot fungus, Phythopthora capsici, were produced easily on potato slice. We collected many potato slice samples on diseased fields in various area. After storage of 24hrs in 20$^{\circ}C$ incubator, White mycelium of Phythopthora sp. formed on potato slice surface. Dilute concentrations of Phythopthora sp. was detected very low contents(1${\times}$10$^1$sporangia/g). But expressing Phythopthora root rots on potato slice did not developed larger lesions upon storage time in room temperature. These results suggest that the use of potato slice in a series of soil cultural system may still serve as efficient means of diagnosis of Phythopthora root rots in the absence of control measures.

  • PDF

Production and Characterization of Manganese Peroxidase from the White Rot Fungus Pleurotus ostreatus in Liquid Culture (액체배양한 느타리 버섯균(Pleurotus ostreatus)으로부터 망간퍼옥시데이즈의 생산 및 특성)

  • Lee, Jae-Sung;Ha, Hyo-Cheol
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.22-26
    • /
    • 2004
  • The ligninolytic basidiomycete, Pleurotus ostreatus K-2946, was produced a manganese peroxidase (MnP) activity when grown in liquid culture with glucose-yeast-peptone (G-Y-P) medium. However, lignin peroxidase (LiP) was not detected in this culture medium. The purification progress of MnP was purified that included chromatography on Sepharose CL-6B, Superdex 75 prep grade and Mono-Q. MnP purified by column chromatography, was 36400 dalton and a pI of 3.95. The optimal pH and temperature of the purified MnP activity were 5.0 and $55^{\circ}C$. The characteristics of MnP produced was quite similar to those of MnP 3 isoenzyme produced by other strains of P. ostreatus.

X-Ray Diffraction Study on the Cellulose Structures in Wood Cell Wall (X선 회절법을 이용한 목재세포벽중의 셀룰로오스의 구조해석)

  • 김남훈;이선호
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.62-69
    • /
    • 1999
  • Lignin in wood cell walls influeced the transformation of the cellulose crystal structure during mercerization. Samples of sound and decayed woods by white rot fungus of Quercus mongolica were treated with 20% aquous NaOH solution, followed by washing and drying, and delignified. The effect of delignification on cellulose structure was investigated by a series of an X-ray diffraction analysis and ultraviolet(UV) microscopy. Delignification of alkali-treated woods did not influence their cellulose crystal structures. It may be concluded that lignin prevents the swelling of wood cellulose during mercerization and restrain the intermingling of cellulose chains.

  • PDF

Decolorization of Poly R-478 Dye by Coriolus versicolor IFO 30388 (구름버섯(Coriolus versicolor IFO 30388)에 의한 Poly R-478 염료의 탈색)

  • Yoon, Kyung-Ha
    • Korean Journal of Microbiology
    • /
    • v.32 no.3
    • /
    • pp.182-185
    • /
    • 1994
  • Effects of nitrogen and carbon sources on the decolorization rate of poly R-478 dye by a white rot basidiomycete Coriorus versicolor IFO 30388 were examined. The fungus exhibited 87.2% of decolorization rate when it was cultured in the state of stationary in a nitrogen-limited medium (pH 4.5) which contained 2.0% glucose, 0.04% ammonium tartrate, 0.02% poly R-478 dye, 2% $KH_2PO_4$, 0.5% $MgSO_4{\cdot}7H_2O$, 0.1% $CaCl_2{\cdot}2H_2O$, 0.002% thiamine-HCl and 10 mM 2,2 dimethylsuccinate (sodium) at $28^{\circ}C$ for 10 days. Decolorization of the dye occurred in the presence of nitrogen source in the medium and decolorization rate increased rapidly after depletion of $NH_4^+$ from the medium.

  • PDF

Purification and Properties of Laccase of the White-rot Basidiomycete Coriolus hirsutus

  • Lee, Yeo-Jin;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.148-153
    • /
    • 1999
  • Laccase produced by Coriolus hirsutus was purified to electrophoretic homogeneity by acetone precipitation, Sephacryl S-2000 HR chromatography, DEAE Sepharose CL-6B chromatography, and Mono Q HR 5/5 chromatography. The purification of laccase was 46.6-fold with an overall yield of 23.7%. Laccase from this fungus was a monomeric glycoprotein with 16% carbohydrate content, and has an isoelectric point of 4.2, and molecular mass of 78 kDa, respectively. The N-terminal amino acid sequence of the enzyme showed significant homology to hoste of laccases from Coriolus versicolor, Pycnoporus cinnabarius, and an unidentified basidiomycete, PM1. The highest rate of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) oxidation by laccase was reached at 45$^{\circ}C$, and te pH optima of the enzyme varied depending on the substrate in the range of 2.0 to 4.5. The enzyme was stable at 60$^{\circ}C$ for 5 h and lost 80% activity at 80$^{\circ}C$ in 30 min. The enzyme oxidized a variety of usual laccase substrates including lignin-related phenol, and had the highest affinity toward ABTS. Under standard assay conditions, the apparent Km value of the enzyme toward ABTS was 8.1 ${\mu}$M. The enzyme was completely inhibited by L-cysteine and sodium azide, but not by potassium cyanide, SDS, ad thiourea.

  • PDF

Characterization of Dye Decolorization in Cell-Free Culture Broth of Trametes versicolor CBR43

  • Ryu, Hyun;Ryu, Hee Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.155-160
    • /
    • 2017
  • The dye decolorization rate in a cell-free culture broth of the white-rot fungus Trametes versicolor CBR43 was studied, including the effects of inhibitors of NaCl, Zn(II), and Cd(II) on dye decolorization activity. The maximum rates of dye decolorization in cell-free culture broth were 1,410, 44.7, 41.2, and $0.19{\mu}mol{\cdot}l^{-1}{\cdot}min^{-1}$ for Acid Blue 62, Acid Black 175, Reactive Blue 4, and Acid Red 114, respectively. The inhibition effects of NaCl, Zn(II), and Cd(II) on dye decolorization were quantitatively compared using the half maximal inhibition concentration ($IC_{50}$), which indicates the concentration of an inhibitor required for 50% inhibition. Based on $IC_{50}$ values, dye decolorization in the cell-free culture broth of CBR43 was most potently inhibited by Cd(II), whereas the inhibitory effect of NaCl was relatively low. The dye decolorization rates and $IC_{50}$ data can be used in the design and development of a dye-wastewater treatment process using T. versicolor CBR43 and its operating factors.

Overproduction of Laccase by the White-Rot Fungus Pleurotus ostreatus Using Apple Pomace as Inducer

  • Park, Young-Jin;Yoon, Dae-Eun;Kim, Hong-Il;Kwon, O-Chul;Yoo, Young-Bok;Kong, Won-Sik;Lee, Chang-Soo
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.193-197
    • /
    • 2014
  • Laccase activity of Pleurotus ostreatus is significantly increased by the addition of apple pomace. Among various conditions, the best concentration of apple pomace and cultivation time for the production of laccase by P. ostreatus was 2.5% and 9 days, respectively. Reverse transcription polymerase chain reaction analyses of laccase isoenzyme genes, including pox1, pox3, pox4, poxc, poxa3, and poxa1b, revealed a clear effect of apple pomace on transcription induction. Our findings reveal that the use of apple pomace can be a model for the valuable addition of similar wastes and for the development of a solid-state fermenter and commercial production of oyster mushroom P. ostreatus.

Transformation of Terpene Synthase from Polyporus brumalis in Pichia pastoris for Recombinant Enzyme Production

  • An, Ji-Eun;Lee, Su-Yeon;Ryu, Sun-Hwa;Kim, Myungkil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.415-422
    • /
    • 2018
  • Terpenoids have a wide range of biological functions and have extensive applications in the pharmaceutical, cosmetic, and flavoring industry. The white-rot fungus, Polyporus brumalis, is able to synthesize terpenoids via terpene synthase, which catalyzes an important step that forms a large variety of sesquiterpene products from farnesyl pyrophosphate (FPP). To improve the production of sesquiterpenes, the terpene synthase gene was isolated from Polyporus brumalis and was heterologously transformed into a Pichia pastoris strain. The open reading frame of the isolated gene (approximately 1.2 kb) was inserted into Pichia pastoris to obtain a recombinant enzyme. Five transformants were obtained and the expression of terpene synthase was analyzed at the transcript level by reverse transcription PCR (polymerase chain reaction) and at the protein level by SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). Expression of the terpene synthase gene product was elevated in the transformants and as expected the molecular weight of the protein was approximately 45 kDa. These recombinant enzymes have potential practical applications and future studies should focus on their functional characterization.

Progress on Understanding the Anticancer Mechanisms of Medicinal Mushroom: Inonotus Obliquus

  • Song, Fu-Qiang;Liu, Ying;Kong, Xiang-Shi;Chang, Wei;Song, Ge
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1571-1578
    • /
    • 2013
  • Cancer is a leading cause of death worldwide. Recently, the demand for more effective and safer therapeutic agents for the chemoprevention of human cancer has increased. As a white rot fungus, Inonotus obliquus is valued as an edible and medicinal resource. Chemical investigations have shown that I. obliquus produces a diverse range of secondary metabolites, including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Importantly, their anticancer activities have become a hot recently, but with relatively little knowledge of their modes of action. Some compounds extracted from I. obliquus arrest cancer cells in the G0/G1 phase and then induce cell apoptosis or differentiation, whereas some examples directly participate in the cell apoptosis pathway. In other cases, polysaccharides from I. obliquus can indirectly be involved in anticancer processes mainly via stimulating the immune system. Furthermore, the antioxidative ability of I. obliquus extracts can prevent generation of cancer cells. In this review, we highlight recent findings regarding mechanisms underlying the anticancer influence of I. obliquus, to provide a comprehensive landscape view of the actions of this mushroom in preventing cancer.