• Title/Summary/Keyword: white noise excitation

Search Result 53, Processing Time 0.021 seconds

Development of Measurement Equipment of Membrane Stress Using White Noise Sound Wave (화이트 노이즈 음파를 이용한 막구조물의 장력 측정장치 개발)

  • Jin, Sang-Wook;Ohmori, Hiroshi;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.63-72
    • /
    • 2008
  • One of the most important matters in keeping membrane structures in healthy condition is to maintain the proper tension distribution over the membrane. However, it is not easy to know the real stress level in the membrane quantitatively after completion of the structures. Authors suggested measurement method that can measure membrane stress using sound wave, and have been holding experimental tests of membrane stress measurement that used the sound external excitation with sine wave and white noise. The concept of the method is the fact that measurement of resonance frequency by vibrating membrane having rectangular boundary by audible frequency can measure membrane stress indirectly. In this paper, through the experimental tests it is proved that the equipment can be used for not only the membrane material of type A but also for types B and C. In addition, it is proved that the developed measurement equipment is available to stably measure the membrane stress which exists in the membrane material of the actual membrane structures.

  • PDF

Transient Response Analysis of Linear Dynamic System with Random Properties (확률론적 특성을 갖는 선형 동적계의 과도 응답 해석)

  • 김인학;독고욱
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.125-131
    • /
    • 1997
  • Most dynamic systems have are known to various random properties in excitation and system parameters. In this paper, a procedure for response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameters and responses with random properties are modeled by perturbation technique, and then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an applicative example, the transient response is considered for systems of single degree of freedom with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF

Transient Response Analysis of Linear Dynamic System with Random Properties (확률론적 특성을 갖는 선형 동적계의 과도응답 해석)

  • 김인학;독고욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.62-69
    • /
    • 1996
  • Most dynamic systems have various random properties in excitation and system parameters. In this paper, a procedure fur response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameter and response with random properties are modeled by perturbation technique, aand then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an application example, the transient response is calculated for a sdof system with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF

Nonlinear Vibration Responses of a Spring-Pendulum System under Random Base Excitation (불규칙 지반 가진력을 받는 탄성진자계의 비선형진동응답)

  • Cho, Duk-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.175-181
    • /
    • 2001
  • An investigation into the response statistics of a spring-pendulum system whose base oscillates randomly along vertical and horizontal line is made. The spring-pendulum system with internal resonance examined is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equation is used to generate a general first-order differential equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. In view of equilibrium solutions of this system and their stability, the response statistics is examined. It is seen that increase in horizontal excitation level leads to a decreased width of the internal resonance region.

  • PDF

Analysis on random vibration of a non-linear system in flying vehicle due to stochastic disturbances (불규칙 교란을 받는 비행체에 장착된 비선형 시스템의 난진동 해석)

  • 구제선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1426-1435
    • /
    • 1990
  • Dynamic behaviour of point tracking system mounted on flying vehicle shaking in a random manner is investigated and the system dynamic is represented by nonlinear stochastic equations. 2-D.O.F. nonlinear stochastic equations are successfully transformed to linear stochastic equations via equivalent linearization procedure in stochastic sense. Newly developed hybrid technique is used to obtain response statistics of the system under non-white random excitation, which is proved to be remarkably accurate one by performing stochastic simulation.

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

RESPONSE ANALYSIS OF A STOCHSTIC UNDER PARAMETRIC ND EXTERNL EXCITATION HAVING COLORED NOISE CHARACTERISTICS (유색잡음 매개변수가진과 외부가진을 받는 확률 시스템의 응답해석)

  • Heo, Hoon;Paik, Jong-Han;Oh, Jin-Hyong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.55-59
    • /
    • 1993
  • Interaction between system and disturbance results in system with time-dependent parameter. Parameter variation due to interaction has random characteristics. Most of the randomly varying parameters in control problem is regarded as white noise random process, which is not a realistic model. In real situation those random variation is colored noise random process. Modified F-P-K equation is proposed to get the response of the random parametric system using some correction factor. Proposed technique is employed to obtain the colored noise parametric system response and confirmed via Monte-Carlo Simulation.

  • PDF

Feedback Model Updating: Application to Indeterminate Structure (궤환 모델 개선법 : 부정정 구조물에의 적용)

  • 정훈상;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.59-64
    • /
    • 2003
  • The parameter modification of the initial FEM model to match it with the experimental results needs the modal information and the modal sensitivity matrix to the parameter change. There are two cases this methodology is ill-equip to deal with; the deficiency of the necessary modal information and the ill-conditioning of the sensitivity matrix. In this research, a novel concept of the feedback exciter that uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains as the reference signal is proposed. There are 2 advantages using this external feedback excitation. First, we can use the change of the system response such as modal data by the active energy Path from the sensor to the exciter. This change of the system response can be additional clues to the system dynamics that we want to know. Secondly, the external energy Path alternates the offset of the Parameter change to the system response. That means the modal sensitivity of the parameters becomes different from the original sensitivities by the feedback excitation. Through the feedback loop, we can change the similar modal sensitivities of some updating parameters and consequently discriminate the parameters using the closed-loop modal data. To demonstrate the discrimination performance, the parameter estimation of an indeterminate structure by use of the feedback method is introduced.

  • PDF

Excitation and System Identification of a Full-Scale Five-Story Structure for the Application of Viscoelastic Dampers (점탄성 감쇠기 적용을 위한 실물크기 5층 건물의 가진 및 시스템 식별)

  • 민경원;이상현;김진구;이영철;이승준;최현훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • Excitation and system identification are carried out for a full-scale five-story structure to obtain fundamental data which will be used for the design of viscoelastic dampers, The hybrid mass driver(HMD) installed on the fifth floor was employed as external exciter to provide excitation for the building, Each floor response was measured and processed to find out where and how the viscoelastic dampers are located and designed. The sine-sweep and white noise loadings were applied to the structure by the HMD to obtain dynamic characteristics such as natural frequencies, damping ratios, and modes, The identified building was experimentally investigated again with the designed viscoelastic dampers installed at inter-stories to obtain the response behavior in the companion paper.

Covariance-driven wavelet technique for structural damage assessment

  • Sun, Z.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-140
    • /
    • 2006
  • In this study, a wavelet-based covariance-driven system identification technique is proposed for damage assessment of structures under ambient excitation. Assuming the ambient excitation to be a white-noise process, the covariance computation is shown to be able to separate the effect of random excitation from the response measurement. Wavelet transform (WT) is then used to convert the covariance response in the time domain to the WT magnitude plot in the time-scale plane. The wavelet coefficients along the curves where energy concentrated are extracted and used to estimate the modal properties of the structure. These modal property estimations lead to the calculation of the stiffness matrix when either the spectral density of the random loading or the mass matrix is given. The predicted stiffness matrix hence provides a direct assessment on the possible location and severity of damage which results in stiffness alteration. To demonstrate the proposed wavelet-based damage assessment technique, a numerical example on a 3 degree-of-freedom (DOF) system and an experimental study on a three-story building model, which are all under a broad-band excitation, are presented. Both numerical and experimental results illustrate that the proposed technique can provide an accurate assessment on the damage location. It is however noted that the assessment of damage severity is not as accurate, which might be due to the errors associated with the mode shape estimations as well as the assumption of proportional damping adopted in the formulation.