• Title/Summary/Keyword: white noise analysis

Search Result 266, Processing Time 0.027 seconds

Location Error Analysis of an Active RFID-Based RTLS in Multipath and AWGN Environments

  • Myong, Seung-Il;Mo, Sang-Hyun;Yang, Hoe-Sung;Cha, Jong-Sub;Lee, Heyung-Sub;Seo, Dong-Sun
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.528-536
    • /
    • 2011
  • In this paper, we analyze the location accuracy of real-time locating systems (RTLSs) in multipath environments in which the RTLSs comply with the ISO/IEC 24730-2 international standard. To analyze the location error of RTLS in multipath environments, we consider a direct path and indirect path, in which time and phase are delayed, and also white Gaussian noise is added. The location error depends strongly on both the noise level and phase difference under a low signal-to-noise ratio (SNR) regime, but only on the noise level under a high SNR regime. The phase difference effect can be minimized by matching it to the time delay difference at a ratio of 180 degrees per 1 chip time delay (Tc). At a relatively high SNR of 10 dB, a location error of less than 3 m is expected at any phase and time delay value of an indirect signal. At a low SNR regime, the location error range increases to 8.1 m at a 0.5 Tc, and to 7.3 m at a 1.5 Tc. However, if the correlation energy is accumulated for an 8-bit period, the location error can be reduced to 3.9 m and 2.5 m, respectively.

Diagnosis of Unstained Biological Blood Cells Using a Phase Hologram Displayed by a Phase-only Spatial Light Modulator and Reconstructed by a Fourier Lens

  • Ibrahim, Dahi Ghareab Abdelslam
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.598-607
    • /
    • 2022
  • In this paper, a simple nondestructive technology is used to investigate unstained biological blood cells in three dimensions (3D). The technology employs a reflective phase-only spatial light modulator (SLM) for displaying the phase hologram of the object being tested, and a Fourier lens for its reconstruction. The phase hologram is generated via superposing a digital random phase on the 2D image of the object. The phase hologram is then displayed by the SLM with 256 grayscale levels, and reconstructed by a Fourier lens to present the object in 3D. Since noise is the main problem in this method, the windowed Fourier filtering (WFF) method is applied to suppress the noise of the reconstructed object. The quality of the reconstructed object is refined and the noise level suppressed by approximately 40%. The technique is applied to objects: the National Institute of Standards (NIS) logo, and a film of unstained peripheral blood. Experimental results show that the proposed technique can be used for rapid investigation of unstained biological blood cells in 3D for disease diagnosis. Moreover, it can be used for viewing unstained white blood cells, which is still challenging with an optical microscope, even at large magnification.

Dynamics Analysis of a Small Training Boat ant Its Optimal Control

  • Nakatani, Toshihiko;End, Makoto;Yamamoto, Keiichiro;Kanda, Taishi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.342-345
    • /
    • 2005
  • This paper describes dynamics analysis of a small training boat and a new type of ship's autopilot not only to keep her course but also to reduce her roll motion. Firstly, statistical analysis through multi-variate auto regressive model is carried out using the real data collected from the sea trial on an actual small training boat Sazanami after the navigational system of the boat was upgraded. It is shown that the roll motion is strongly influenced by the rudder motion and it is suggested that there is a possibility of reducing the roll motion by controlling the rudder order properly. Based on this observation, a new type of ship's autopilot that takes the roll motion into account is designed using the muti-variate modern control theory. Lastly, digital simulations by white noise are carried out in order to evaluate the proposed system and a typical result is demonstrated. As results of simulations, the proposed autopilot had good performance compared with the original data.

  • PDF

A Study on Voice Activity Detection Using Auditory Scene and Periodic to Aperiodic Component Ratio in CASA System (CASA 시스템의 청각장면과 PAR를 이용한 음성 영역 검출에 관한 연구)

  • Kim, Jung-Ho;Ko, Hyung-Hwa;Kang, Chul-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.181-187
    • /
    • 2013
  • When there are background noises or some people speaking at the same time, a human's auditory sense has the ability to listen the target speech signal with a specific purpose through Auditory Scene Analysis. The CASA system with human's auditory faculty system is able to segregate the speech. However, the performance of CASA system is reduced when the CASA system fails to determine the correct position of the speech. In order to correct the error in locating the speech on the CASA system, voice activity detection algorithm is proposed in this paper, which is a combined auditory scene analysis with PAR(Periodic to Aperiodic component Ratio). The experiments have been conducted to evaluate the performance of voice activity detection in environments of white noise and car noise with the change of SNR 15~0dB. In this paper, by comparing the existing algorithms (Pitch and Guoning Hu) with the proposed algorithm, the accuracy of the voice activity detection performance has been improved as the following: improvement of maximum 4% at SNR 15dB and maximum 34% at SNR 0dB for white noise and car noise, respectively.

Dynamic Modeling and Verification of Litton's Space Inertial Reference Unit(SIRU) (ICCAS 2003)

  • Choi, Hong-Taek;Oh, Shi-Hwan;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1211-1215
    • /
    • 2003
  • Accurate mathematical models of spacecraft components are an essential of spacecraft attitude control system design, analysis and simulation. Gyro is one of the most important spacecraft components used for attitude propagation and control. Gyro errors may seriously degrade the accuracy of the calculated spacecraft angular rate and of attitude estimates due to inherent drift and bias errors. In order to validate this model, nominal case simulation has been performed and compared for the low range mode and high range mode, respectively. In this paper, a mathematical model of gyro containing the relationships for predicting spacecraft angular rate and disturbances is proposed.

  • PDF

performance Evaluation of a Multi-Media DS/SSMA System (다매체 직접수열 대역확산 다중접속 시스템의 성능분석)

  • 김홍직;송익호;김상우;한진희
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.33-38
    • /
    • 1996
  • A multi-media binary DS/CDMA system with variable processing gain and coherent correlation receivers are considered under additive white Gaussian noise channels. Two types of information sources with different rates and transmitting powers are assumed to be transmitted simultaneously in the same channel. Average signal-to-noise ratios at the correlation receiver outputs for each type of information sources are analytically derived as functions of discrete partial cross-correlations between spreading code sequences. The analysis is expected to provide analytical tools for use in preliminary system design and spreading code selection.

  • PDF

New Analysis on the Generalization of SC Systems for the Reception of M-ary Signals over Nakagami Fading Channels

  • Kim Hong-Chul;Kim Chang-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.190-196
    • /
    • 2004
  • An alternative solution to the problem of obtaining acceptable performances on a fading channel is the diversity technique, which is widely used to combat the fading effects of time-variant channels. The symbol error probability of M-ary DPSK(MDPSK), PSK(MPSK) and QAM(MQAM) systems using 2 branches from the branch with the largest signal-to-noise ratio(SNR) at the output of L-branch selection combining(SC), i.e., SC2 in frequency- nonselective slow Nakagami fading channels with an additive white Gaussian noise(AWGN) is derived theoretically. These performance evaluations allow designers to determine M-ary modulation methods for Nakagami fading channels.

New Analysis on Reception of M-ary FSK Signals over Rician Fading Channels

  • Kim, Chang-Hwan;Han, Young-Yearl
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1176-1185
    • /
    • 2000
  • In this paper, we analyze the distribution of the envelope of the received signal over frequency-nonselective slow Rician fading channels with aadditive white Gaussian noise(AWGN). Especially, we can obtain the error rate performance of noncoherent M-ary FSK(MFSK) over slow and flat Rician fading channels and AWGN from the new probability density function(PDF) of the envelope, not PDF of the instantaneous signal-to-noise ratio(SNR) published before, of the received signal. When coherent MFSK signals experience the Rician fading channel, the performances are derived, using the union bound.

  • PDF

Further Analysis Performance on the Generalization of SC for the Reception of M-ary Signals on Wireless Fading Channels

  • Na, Seung-Kwan;Kim, Chang-Hwan;Jin, Yong-Ok
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • An alternative solution to the problem of obtaining acceptable performances on a fading channel is the diversity technique, which is widely used to combat the fading effects of time-variant channels. The symbol error probability of M-ary DPSK (MDPSK), PSK (MPSK) and QAM (MQAM) systems using 2 branches from the branch with the largest signal-to-noise ratio(SNR) at the output of L-branch selection combining(SC), i.e., SC2 in frequency-nonselective slow Nakagami fading channels with an additive white Gaussian noise(AWGN) is derived theoretically. These performance evaluations allow designers to determine M-ary modulation methods against Nakagami fading channels.

Further Analysis on Selective Diversity Reception for Detection of M-ary Signals Over Nakagami Fading Channels

  • Na, Seung-Gwan;Kim, Chang-Hwan;Chin, Yong-Ohk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1045-1052
    • /
    • 2005
  • The symbol error probability of M-ary PSK (MPSK) and QAM (MQAM) systems using the branch with the largest signal-to-noise ratio (SNR) at the output of L-branch selection combining (SC) in frequency-nonselective slow Nakagami fading channels with an additive white Gaussian noise (AWGN) is derived theoretically For integer values of the Nakagami fading parameter m, the general formula for evaluating symbol error rate (SER) of MPSK signals in the independent branch diversity system comprises numerical analyses with the integral-form expressions. An exact closed-form SER performance of MQAM signals under the effect of SC diversity via numerical integration is presented. These performance evaluations allow designers to determine M-ary modulation methods for Nakagami fading channels.