• Title/Summary/Keyword: white duplex board

Search Result 9, Processing Time 0.023 seconds

Improvement of Thickness in White Duplex Board by Utilization of Defibrated Fibers (1) - Utilization of Defibrated Fibers - (백판지의 두께 증대를 위한 목질섬유의 이용 (1) - 목질섬유의 이용 -)

  • Seo, Yung Bum;Kim, Hyun Jun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.34-40
    • /
    • 2014
  • Wood fibers for medium density fiberboard (MDF) was used in the filler layer of the white duplex board for increasing thickness and bulk of the board. The MDF fibers and the old corrugated container (OCC) furnish were refined, and mixed together to form paperboard. At optimum mixing ratios and refining degrees, stiffness and tensile strength of the MDF fiber-containing board were higher than those of the board with 100% OCC. It was found that there was possibility to reduced basis weight of the filler layer down to 90% of the all OCC furnish by judicious selection of the mixing ratio and the refining method of the MDF fibers. Drainage rate increase and potential drying energy savings were additional benefits.

Improvement of Bending Stiffness in White Duplex Board by Utilization of Wood Fibers from Medium Density Fiberboard (2) Ozone treatment (백판지의 휨강성 증대를 위한 목질섬유의 이용 (2) 오존처리)

  • Seo, Yung Bum;Kim, Hyun Jun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Wood fibers for medium density fiberboard (MDF) was used in the filler layer of the white duplex board for increasing thickness and bulk of the board. The MDF fibers were treated with ozone (3% based on dry weight of the fibers), and mixed together with OCC (old corrugated container) to form paper. Ozone-treated MDF fibers gave high bulk, high tensile strength, high internal bond and fast drainage to the furnish mixed with OCC. It was shown that there were possibilities to reduced basis weight of the filler layer without loss of thickness, stiffness, and tensile strength. Furthermore, it showed the possibility to develop a new kind of board product that has high stiffness as well as high strength properties with light basis weight by application of the ozone-treated MDF fibers.

Effect of Precipitated Calcium Carbonate on Paper Properties and Drying Energy Reduction of Duplex-board (원료 및 건조에너지 절감을 위한 경질탄산칼슘의 백판지 공정 적용성 평가)

  • Lee, Ji-Young;Kim, Young-Hun;Lee, Se-Ran;Kim, Chul-Hwan;Sung, Yong Joo;Lim, Gi-Baek;Kim, Sun-Young;Kim, Jun-Sik;Park, Jong-Hea
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.24-29
    • /
    • 2013
  • In this study, we investigated the applicability of PCC(precipitated calcium carbonate) as a raw material for the manufacture of duplex-board. Papers were made with white-ledger stock collected from the actual duplex-board mill and PCC in a laboratory, and paper properties including bulk, ash content, tensile strength, burst strength, brightness and opacity were measured. The effect of PCC on the drying energy of duplex-board was also determined by measuring the moisture content of wet web and calculating drying energy reduction. PCC increased bulk and ISO brightness significantly, which means PCC can decrease the use of virgin pulp and recycled fibers. PCC decreased the moisture content of wet web, which means PCC can decrease drying energy consumption. However, paper strength decreased as addition levels of PCC addition increased. Therefore, the addition level of PCC must be determined considering the reduction of paper strengths.

Evaluation of Wastepaper Bale Compositions and their Fiber Properties for Board Grade Paper (산업용지 제조용 압축폐지 베일의 분석 및 섬유 특성 평가)

  • Lee, Tai-Ju;Ko, Seung-Tae;Kang, Kwang-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.82-90
    • /
    • 2009
  • It is very important to utilize effectively fibrous waste paper in terms of cost savings, environmental effects, and governmental policies. The quality of final products and runnability of papermaking process are primarily affected by constitutions of fibrous raw materials. In specific, board grade paper depends directly on compositions of waste paper bales. At present, the raw materials of board grade paper are mainly derived from lots kinds of wastepaper. Some papermaking countries, like EU, USA and Japan have advanced classification and management systems of recycled fiber, but Korea has not yet organized systematically. In this study, evaluation of wastepaper bale compositions and their fiber properties were carried out for effective utilization of fibrous raw materials for board grade paper production. 3 kinds of wastepaper bales were classified to fibrous or non-fibrous materials. In case of fibrous materials, KOCC, kraft sack paper and white duplex board matters were main component in total weight basis, and in case of non-fibrous materials, vinyl, plastic and cloth matters were main component, in turns. 3 representative kinds of waste paper were disintegrated and classified, and then prepared to handsheet for evaluation of recycled fiber property. Consequently, fines and ash content of waste paper, isolated from KOCC and white duplex board were higher than that of kraft sack paper. pH values of all kinds of waste fibers were neutral or weak alkaline.

Studies on the Foldability of Coated Board(II) - Influence of operating conditions in creasing and folding process on the foldability of duplex board - (백판지의 제함적성에 관한 연구(제2보) - 괘선/구부림 가공 작업조건이 제함적성에 미치는 영향 -)

  • Lee, Yong-Kyu;Lim, Won-Seok;Kim, Chang-Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.4
    • /
    • pp.66-73
    • /
    • 2008
  • When coated paperboard is printed, pressed into a groove with a creasing rule and folded, white line cracking occurs along the crease due to intensive mechanical pressure. The cracking will deteriorates product quality and waste resources. Effects of creasing pressure and ink dosage on the foldability of coated board were investigated. It was shown that applying an optimum pressure is important during creasing. When the pressure was too low, the crease formed was not sufficiently deep enough to enable precise folding. When an excess pressure was applied, fiber bonding was destroyed, resulted in unsatisfactory cracking. When the coated board was folded in machine direction (MD), long cracks were formed along MD. When it folded in cross direction (CD), the cracks were shorter and formed perpendicular to CD. Printing promoted cracking due to the decrease in flexibility of coated board. In addition, uneven ink film layer on the coating layer caused worse cracking.

Molecular Diffusion of Water in Paper( I )-Steady-State Diffusion Experiment for the Evaluation of Water Vapor-proof Properties of Paper- (종이내 수분확산(제1보)-종이의 방습성 평가를 위한 수증기의 정류상 확산 실험-)

  • Yoon, Sung-Hoon;Jeon, Yang;Ow, Say-Kyoun;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.1
    • /
    • pp.59-70
    • /
    • 1998
  • A steady-state molecular diffusion experiment was conducted to evaluate the water vapor proof properties of paper Handsheets prepared from unbleached Itraft pulps(UKP) and old newspapers(ONP) and four different types of polymer-laminated white duplex board were tested under appropriate standard conditions. The diffusivity was determined on the basis of the Fickean first law. Results obtained from this study can be summarized as follows ; 1. The diffusivity data for handsheets showed about $10^{-5}cm^2/min$. whereas polymer-laminated paperboards had remarkably improved water-vapor resistance with about $10^3 to 10^4$ times lower diffusivity : 2. Sheet basis weight, wet-swelling and sizing degree had little influence on the diffusivity of paper; 3 Linear relationship existed between sheet density and diffusivity, and, 4. Highly sfgnificant linear relationship could be observed between diffusivity and Darcy s gas permeability. Results indicate that diffusivity, an intrinsic property of paper, can provide a valuable information for precise evaluation and improved quality control of water-vapor proof properties of paper.

  • PDF

Morphological and Physical Properties of ONP Treated by CaCO3 In-situ Precipitation Method (탄산칼슘 in-situ precipitation 처리된 신문고지의 형태와 물성변화)

  • Lee, Young Ho;Jung, Jae Kwon;Lee, Ki Seung;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.44-54
    • /
    • 2013
  • Replacing OMG (old magazine) to ONP (old newspaper) by raising optical property through $CaCO_3$ in-situ precipitation method in white duplex board presents cost reduction and possible drying energy saving. The strength property impairment by the presence of $CaCO_3$ could be supplemented by the fiber furnish treatment or strength polymer addition. In $CaCO_3$ in-situ precipitation of ONP, it was found from morphological study using FlowCAM, an image analyzer, that most of calcium carbonate were formed on the fines, and made the size of the fines larger. For the case of forming calcium carbonate only on the fractionated fines, the size of the fines were the biggest, and there were more clean surface areas available for bonding for the fractionated long fibers when fractionated fibers and fines were regrouped to make paper.

Development of New Organic Filler Made from Rice Husk by Paperboard Mill Trials (산업용지 현장테스트를 통한 왕겨 유기충전제 최적 사양 탐색)

  • Lee, Ji Young;Kim, Young Hun;Kim, Chul Hwan;Sung, Yong Joo;Wi, Sang Wook;Park, Jong-Hea;Kim, Eun Hea
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.96-101
    • /
    • 2015
  • In the previous study, we investigated the physical properties of new organic fillers made from major agricultural byproducts, including rice husks, peanut husks and garlic stems, and we estimated that rice husk was the best candidate for use as new organic fillers in paperboard. In this study, an organic filler prototype was produced with rice husk and the mill trials were carried out in a white liner chipboard (duplexboard) mill. The rice husk organic filler was added to the middle ply of SC $350g/m^2$ to determine the optimal conditions for the manufacture of rice husk organic fillers. The mill trials were performed three times and the bulk improvement and drying energy reduction were measured to identify the functionality of the rice husk organic filler compared to that of the commercial wood powder. In the first mill trial, the test failed because the surface roughness of the duplexboard had deteriorated after the rice husk organic filler was added to the OCC stock. As all of the particles remaining on the 60 mesh sieves were removed and the particle size was decreased by increasing the length of the grinding process, the surface roughness of the duplexboard did not be deteriorated in the second mill trial. However, the bulk improvement and drying energy reduction were not observed. In the final mill trial, as the particle size of the rice husk organic filler was controlled by increasing the portion of particles passing through the 60 mesh sieves and remaining 100 mesh sieves, higher bulk improvement and drying energy reduction were acquired compared to the commercial wood powder.