• Title/Summary/Keyword: whey protein hydrolysates

Search Result 22, Processing Time 0.02 seconds

Emulsifying Properties of Whey Protein Hydrolysates (유청 단백질 가수분해물의 유화특성)

  • 양희진;이수원
    • Food Science of Animal Resources
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • This experiment was carried out to study changes in solubility and emulsifying properties of whey protein. Whey protein hydrolysates were obtained from tryptic hydrolysis of whey protein concentrate at pH 8.0 and 37$^{\circ}C$ for 6 hours. Emulsifying activity of whey protein hydrolysate was highest at 4 hours of hydroysis and at 5.50% of DH. During hydrolysis of whey protein concentrate with trypsin, ${\alpha}$-lactalbumin was not easily broken down. But ${\beta}$-lactoglobulin was hydrolysed rapidly from the early stage of hydrolysis, producing several low molecular weight peptides, which have to participate in increasing emusifying activity. The solulbility of hydyolysates tended to increase depending on hydrolysis time; however, there was a gradual decrease after 5 hours. The hydrolysate had a minimum solubility near the isoelectric point range (pH 4∼5). The more hydrolysed the whey protein concentrates, the more soluble they are near the pl. They aye also more soluble above pH 6. Emulsifying activity of hydrolysates showed similar results to solubility. Creaming stability gradually increased when hydrolysis increased, increasing rapidly above pH 8 after 4 hours of hydrolysis.

ACE-inhibitory Effect and Physicochemical Characteristics of Yogurt Beverage Fortified with Whey Protein Hydrolysates

  • Lim, Sung-Min;Lee, Na-Kyoung;Park, Keun-Kyu;Yoon, Yoh-Chang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.886-892
    • /
    • 2011
  • This study investigated the ACE-inhibitory effect of yogurt beverage fortified with hydrolysates as well as the suitability of hydrolysates as a nutraceutical additive to yogurt beverage. Three whey protein hydrolysates hydrolyzed by alcalase, protamex, and trypsin were each added to yogurt beverage at concentrations of 1.25, 2.5, and 5 mg/mL. Yogurt beverage fortified with 2.5 mg/mL of hydrolysates had 61-69% ACE-inhibitory activity, whereas yogurt beverage fortified with 5 mg/mL of hydrolysates showed 74% ACE-inhibitory activity. There were no significant differences in ACE-inhibitory activity between the alcalase or protamex hydrolysates during storage; however, trypsin hydrolysate exhibited significant differences. On the other hand, physicochemical characteristics such as pH (3.47-3.77), titratable acidity (0.81-0.84%), colority, viable cell count, and sensory qualities were not significantly different among the tested yogurt beverage samples during storage. These results showed that yogurt beverage fortified with whey protein hydrolysates maintained antihypertensive activity and underwent no unfavorable changes in physicochemical characteristics regardless of enzyme type.

Separation of Calcium-binding Protein Derived from Enzymatic Hydrolysates of Cheese Whey Protein

  • Kim, S.B.;Shin, H.S.;Lim, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.712-718
    • /
    • 2004
  • This study was carried out to separate the calcium-binding protein derived from enzymatic hydrolysates of cheese whey protein. CWPs (cheese whey protein) heated for 10 min at $100^{\circ}C$ were hydrolyzed by trypsin, papain W-40, protease S, neutrase 1.5 and pepsin, and then properties of hydrolysates, separation of calcium-binding protein and analysis of calcium-binding ability were investigated. The DH (degree of hydrolysis) and NPN (non protein nitrogen) of heated-CWP hydrolysates by commercial enzymes were higher in trypsin than those of other commercial enzymes. In the result of SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis), $\beta$-LG and $\alpha$-LA in trypsin hydrolysates were almost eliminated and the molecular weight of peptides derived from trypsin hydrolysates were smaller than 7 kDa. In the RP-HPLC (reverse phase HPLC) analysis, $\alpha$-LA was mostly eliminated, but $\beta$-LG was not affected by heat treatment and the RP-HPLC patterns of trypsin hydrolysates were similar to those of SDS-PAGE. In ion exchange chromatography, trypsin hydrolysates were shown to peak from 0.25 M NaCl and 0.5 M NaCl, and calcium-binding ability is associated with the large peak, which was eluted at a 0.25 M NaCl gradient concentration. Based on the results of this experiment, heated-CWP hydrolysates by trypsin were shown to have calcium-binding ability.

Optimization of Whey-Based Medium for Growth and ACE-Inhibitory Activity of Lactobacillus brevis

  • Ahn, Jae-Eun;Park, Seung-Yong;Lee, Byong-H.
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • A Whey-based medium was formulated with Lactobacillus brevis to investigate whether any functional peptides could derive from whey protein. The optimal concentrations of the ingredients of the medium for the growth of Lactobacillus were determined as 2% whey protein concentrate and 1% glucose and 0.5% yeast extracts. The growth of Lb. brevis was improved with the supplementation of yeast extracts than glucose. The viable cells counts of Lb. brevis reached to 2.0 × 10$^8$CFU/mL in the whey-based medium. The whey protein hydrolysates recovered from the supernatant after centrifugation at 10,000 x g for 10min induced strong inhibitory activity against ACE. When the whey protein hydrolysate were partially purified by a membrane tubing below 8,000Da, the partially purified fraction remained 64.7 ${\pm}$ 3.6% of the ACE inhibition activity of the whey protein hydrolysates and IC$_{50}$ was 38.8 ${\pm}$ 2.2mg/mL. The whey-based medium was proved to be effective in producing ACE inhibitory peptides by lactic bacteria fermented whey protein.

  • PDF

Production of Ready-to-Reconstitute Functional Beverages by Utilizing Whey Protein Hydrolysates and Probiotics

  • Kumar, Sabbini Kalyan;Jayaprakasha, Heddur Manjappa;Paik, Hyun-Dong;Kim, Soo-Ki;Han, Song-Ee;Jeong, A-Ram;Yoon, Yoh-Chang
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.575-581
    • /
    • 2010
  • This investigation was aimed at developing a ready-to-reconstitute beverage by utilizing probiotics and whey protein hydrolysates carrying bioactive peptides. Cheddar cheese whey was ultrafiltered. The 18% protein retentate was subjected to protein hydrolysis using Neutrase. The hydrolyzed retentate was further condensed to 35% total solids and spray-dried at $75^{\circ}C$ outlet air temperature. Different levels of sugar, citric acid and stabilizer were blended for spray-dried hydrolysates. Spray-dried hydrolysate was further inoculated with different levels of probiotics grown in a whey medium and dried in fluidized-bed drier at $40^{\circ}C$ to obtain a ready-to-reconstitute beverage. Hydrolysis was greatest at an enzyme:substrate ratio of 1:25 for 3 h. Spray-dried hydrolysate reconstituted to 1% protein and blended with 15% sugar, 0.2% citric acid and 0.15% xantham gum resulted in a superior product with no sedimentation. Accordingly, sugar, citric acid and xanthum gum were dry-blended with spray-dried hydrolysates. Bifidobacterium bifidum and Lactobacillus acidophilus that was grown separately in a whey medium, blended to produce 2% spray-dried hydrolysate and dried as described above resulted in a readyto-reconstitute beverage mix. The fluidized dried product typically exhibited a probiotic count of $10^8$colony forming units (CFU)/g. However, blending of probiotic to the retentate and direct spray-drying precipitously reduced the probiotic count to $10^4$ CFU/g of powder.

Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

  • Jeewanthi, Renda Kankanamge Chaturika;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.350-359
    • /
    • 2015
  • This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application.

Peptide Analysis and the Bioactivity of Whey Protein Hydrolysates from Cheese Whey with Several Enzymes

  • Jeewanthi, Renda Kankanamge Chaturika;Kim, Myeong Hee;Lee, Na-Kyoung;Yoon, Yoh Chang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.62-70
    • /
    • 2017
  • The aim of this study was identifying a suitable food grade enzymes to hydrolyze whey protein concentrates (WPCs), to give the highest bioactivity. WPCs from ultrafiltration retentate were adjusted to 35% protein (WPC-35) and hydrolyzed by enzymes, alcalase, ${\alpha}-chymotrypsin$, pepsin, protease M, protease S, and trypsin at different hydrolysis times (0, 0.5, 1, 2, 3, 4, and 5 h). These 36 types of hydrolysates were analyzed for their prominent peptides ${\beta}-lactoglobulin$ (${\beta}-Lg$) and ${\alpha}-lactalbumin$ (${\alpha}-La$), to identify the proteolytic activity of each enzyme. Protease S showed the highest proteolytic activity and angiotensin converting enzyme inhibitory activity of IC50, 0.099 mg/mL (91.55%) while trypsin showed the weakest effect. Antihypertensive and antioxidative peptides associated with ${\beta}-Lg$ hydrolysates were identified in WPC-35 hydrolysates (WPH-35) that hydrolyzed by the enzymes, trypsin and protease S. WPH-35 treated with protease S in 0.5 h, responded positively to usage as a bioactive component in different applications of pharmaceutical or related industries.

Functional Properties of Yogurt Containing Specific Peptides derived from Whey Proteins

  • Won, Ji-Young;Kim, Hong-Soek;Jang, Jin-Ah;Kim, Cheol-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.249-254
    • /
    • 2017
  • The purpose of this study was to investigate the acid tolerance, bile acid tolerance, and fermentation activity of lactic acid bacteria isolated from Kimchi in the presence of hydrolysates of whey protein concentrate. Kimchi isolates DK109, DK119, DK121, DK128, DK211, DK212, and DK215, which were identified as Lactobacillus sp., and L. casei DK128 showed the highest acid and bile acid tolerance. To produce whey hydrolysates, enzymes were added to a 10% (w/v) whey protein concentrate (WPC) solution at 1:50 (w/v, protein). The viabilities of the DK strains were determined in the presence of low pH and bile salts. Then, yogurt was produced via fermentation with L. casei DK128, an isolate from Kimchi, in the presence of the following additives: CPP, WPC, and WPC hydrolysates (WPCH) generated by alcalase (A) or neutrase (N). The produced yogurts were subjected to various analyses, including viable cell counts (CFU/mL), pH, titratable activity, and sensory testing. After 8 h of fermentation, the pH and titratable activity values of all test samples were 4.2 and 0.9, respectively. The viable counts of LAB were $3.49{\times}10^8$, $5.72{\times}10^8$, $7.01{\times}10^8$, and $6.97{\times}10^8$, for the Control, CPP, A, and N samples, respectively. These results suggest that whey proteins have potential as dietary supplements in functional foods and that WPCH could be used in yogurt as a low-cost alternative to CPP.

Studies on the Development of Improved Health Beverages containing Bioactive Peptide from Hydrolysates of Cheese Whey Protein: A Review (생리활성 펩타이드를 함유하는 치즈 유청단백질 가수분해물로부터 기능성 건강음료 개발에 관한 연구: 총설)

  • Yoo, Sung-Ho;Seo, Kun-Ho;Chon, Jung-Whan;Kim, Hyun-Sook;Song, Kwang-Young;Lim, Jong-Soo;Yoon, Sung-Sik;Paik, Hyun-Dong;Yoon, Yoh-Chang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.109-125
    • /
    • 2013
  • Recently, functional foods and bioactive components in foods have drawn the attention and interest of food scientists, nutritionists, health professionals, and general consumers. Bioactive whey protein is a highly concentrated milk serum isolate or concentrate, which is high in protein (80~90% protein by weight), carbohydrate- and sugar-free, and nonfat or very low in fat. Bioactive whey protein enhances both healthy and deficient immune systems. In general, ultrafiltered whey protein contains various whey protein concentrate peptides, which could be used for manufacturing probiotics added to health beverages. Hence, the objective of this paper was to review the published literature on research of new functionally improved health beverages using various bioactive components extracted from milk and dairy products.

  • PDF

Effects of Whey Protein Hydrolysates on Lipid Profiles and Appetite-Related Hormones in Rats Fed High Fat Diet (고지방식이를 섭취한 흰쥐에서 유청단백질 가수분해물의 섭취가 지질 농도 및 식욕 관련 호르몬에 미치는 영향)

  • Park, Jung-Yoon;Park, Mi-Na;Choi, You-Young;Yun, Sung-Seob;Chun, Ho-Nam;Lee, Yeon-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.428-436
    • /
    • 2008
  • This study was carried out to compare the effects of whey protein concentrate, its hydrolysates and macropeptide fractions obtained from papain treatment of whey protein on lipid levels and appetite-related hormones in obesity model rats induced by high fat diet. Four week-old male Sprague-Dawley rats were fed high fat (18% w/w) and low protein (10% w/w) diet for 4 weeks and then divided into four groups (n=8/group). Rats were fed high fat diets containing various nitrogen sources; 10% whey protein concentrate (10WPC), 25% whey protein concentrate (25WPC), 25% whey protein hydrolysates (25WH), and 25% whey macropeptide fractions (25WP, MW$\geq$10,000), respectively for 6 weeks. There were no significant differences in body weight gain and food intake among groups. A significant decrease of total lipid, triglyceride in serum was observed in 25WH and 25WP groups. Total lipid and triglyceride contents of the liver were significantly decreased in 25WPC, 25WH and 25WP groups compared with 10WPC group. However, in the liver, there were no differences in the contents of total lipid and triglyceride among 25WPC, 25WH and 25WP groups. The daily amounts of feces were significantly increased in 25WH and 25WP groups and the excretion of total lipid and triglyceride were significantly increased in 25WH group. Serum glucose and insulin concentration were significantly decreased in 25WH group. The concentration of serum ghrelin was significantly decreased in the 25WPC, 25WH and 25WP groups compared with 10WPC group. However, there was no significant difference in the concentration of serum leptin among groups. These results suggest that whey protein hydrolysates and macropeptide fractions may show beneficial effects on the lipid profile in serum and liver, appetite regulation and insulin resistance in obesity model rats induced by high fat diet.