• Title/Summary/Keyword: wheel slip

Search Result 226, Processing Time 0.026 seconds

A Study on Optimal Design of Automotive Hydraulic Control System for Slip Ratio Control (슬립율 제어를 위한 자동차용 유압 조절시스템의 최적 설계에 관한 연구)

  • 김대원;김진한;최석창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.41-50
    • /
    • 1998
  • In this study, to investigate a characteristics of slip ratio control of H.C.U for ABS, half car model tester were developed and a new H.C.U. was compactly designed comparing to the commercical H.C.U. for ABS. In half car model tester, variable inertia wheel has been used to load the car weights and braking forces according to the road surface conditions which were realized by pneumatic cylinder. And solenoid valves using P.W.M. (Pulse Width Modulation) method were installed in the new H.C.U The slip ratio characteristics of tire had been measured using half car model tester and the results were used in the control simulation for a new H.C.U.

  • PDF

Simulation for High Speed Trains with Wheel - Rail Fuzzy Adhesion model (휠-레일 점착 퍼지 모델에 의한 고속전철의 주행 시뮬레이션에 관한 연구)

  • Kim, Moon-Sup;Kim, Dong-Woo;Shin, Doo-Jin;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.347-349
    • /
    • 1998
  • This paper describes a fuzzy identification model for slip - adhesion curve of High - speed trains. The model has fuzzy inputs corresponding to rail condition and crisp inputs for train. Nonlinear function is obtained by using fuzzy outputs. Finally slip - adhesion curve is given by the function. First, Results are presented of slip - adhesion curves under the influence of changing rail condition. Second, Dynamic moving simulation by proposed fuzzy slip - adhesion model is presented. Simulation results show fine characteristics.

  • PDF

The wheel wear prediction of a Korea High Speed Train using a FE-analysis (유한요소해석을 이용한 한국형 고속철도 차량의 차륜 마모 예측)

  • Choi Jeong Heum;Han Dong-Chul;Kim Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.409-414
    • /
    • 2005
  • It is difficult to apply the Hertz theory to the wheel-rail contact problem which has the complicated geometric form and plastic deformation. Therefore, we perform the elastic-plastic FE analysis and compare the results with those of Hertz theory. Kalker's simplified theory of rolling contact is used to discretize the contact patches and calculate local traction and slip. The wear volumes are calculated using Archard wear equation.

  • PDF

Absolute Vehicle Speed Estimation considering Acceleration Bias and Tire Radius Error (가속도 바이어스와 타이어반경 오차를 고려한 차량절대속도 추정)

  • 황진권;송철기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.234-240
    • /
    • 2002
  • This paper treats the problem of estimating the longitudinal velocity of a braking vehicle using measurements from an accelerometer and wheel speed data from standard anti-lock braking wheel speed sensors. We develop and experimentally test three velocity estimation algorithms of increasing complexity. The algorithm that works the best gives peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

A Disctete Model Reference Control With a Neural Network System Ldentification for an Active Four Wheel Steering System

  • 김호용;최창환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.29-39
    • /
    • 1997
  • A discrete model reference control scheme for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of discrete time nonlinar dynamics. The schmen employs a neural network to identify the plan systems, wher the neural network estimates the nonlinear dynamics of the plant. The algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed. Whith thd resulting identification model which contains the neural networks, the parameters of controller are adjusted. The proposed scheme is applied to the vehicle active four wheel system and shows the validity and effectiveness through simulation. The three-degree-of freedom vehicle handling model is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the yaw rate overshoot reduction of a typical mid-size car is improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response andl smaller side slip angle than the 2WS case.

  • PDF

Study on the relation between creep phenomena and radiating squeal noise about the railway (철도차량 곡선부 주행시 차륜에 작용하는 크립과 스킬소음 발생에 관한 고찰)

  • Kim, Beom-Soo;Kim, Sang-Soo;Kim, Kwan-Ju;Lee, Chan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.61-64
    • /
    • 2006
  • This paper presents experimental analysis of a friction-driven wheel responsible for generating wheel squeal. Squeal noise generating mechanism has been examined under the laboratory condition by the model rig. Creep characteristics and squeal noise were observed by varying relative velocity of the wheel with respect to the rail and friction coefficient. Computational radiating noise analysis was also performed based on the modal analysis and noise transfer function measurement of the object wheel.

  • PDF

Set up of an antilocking-brake-system for the single wheel of passenger cars and brake test using a test rig (승용차의 single wheel에 대한 antilocking-brake-system의 구성 및 test rig을 이용한 제동실험)

  • 홍예선;지태수;고창복
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.36-45
    • /
    • 1990
  • In this study an antilocking-brake-system was set up for the single wheel of passenger cars. The control algorithm for the system was programmed by C-language and executed by a 16bit personal computer, which took the role of an electronic control unit. The performance of the antilocking-brake-system was tested using a test rig, which was specially designed and built up for the simulation of braking on the slippery road. The test results were satisfactory. Although the simulation method of the friction characteristics between the tire and the contact surface on the test rig appeared not to be absolutely suitable, the test rig allowed the basic investigation of the influence of the antilocking brake control on the wheel slip.

  • PDF

Tractive Performance Comparison Between Wheel-Drive Tractors and A Rubber Belt Crawler Tractor

  • Nikoli, I.R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1196-1201
    • /
    • 1993
  • Test of Caterpillar Challenger 65 tractor which has rubber tracks, and articulated four wheel drive tractor with dual wheels and a mechanical front wheel drive tractor were conducted on an unplowed and plouwed wheat stubble field. The following parameters were analyzed : tractive efficiency (ηv), net tractive coefficient ($\phi$n), slip ($\sigma$) , drawbar pull(Fv), drawbar power (Pv) and forward velocity(v). The maximum net tractive coefficient was established at the tractive efficiency of 0.60 on the unplowed wheat stubble field : for the Challenger 65 tractor 0.855 ; 4WD 0.624 and MFWD 0.534 and on the plowed wheat stubble field with the tractive efficiency of 0.40 for the Challenger 65 tractor 0.82 : 4WD 0.57 and for tractor MFWD 0.48.

  • PDF

VEHICLE SPEED ESTIMATION BASED ON KALMAN FILTERING OF ACCELEROMETER AND WHEEL SPEED MEASUREMENTS

  • HWANG J. K.;UCHANSKI M.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.475-481
    • /
    • 2005
  • This paper deals with the algorithm of estimating the longitudinal speed of a braking vehicle using measurements from an accelerometer and a standard wheel speed sensor. We evolve speed estimation algorithms of increasing complexity and accuracy on the basis of experimental tests. A final speed estimation algorithm based on a Kalman filtering is developed to reduce measurement noise of the wheel speed sensor, error of the tire radius, and accelerometer bias. This developed algorithm can give peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

A Study of ADS Slip Ratio Control using Solenoid Valve (전자밸브를 이용한 ABS 슬립율 제어에 관한 연구)

  • Choi, Jong-Hwan;Kim, Sung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.676-681
    • /
    • 2001
  • ABS is a safety device, which adds hydraulic system to the existing brake system to prevent wheel from locking, so we can obtain maximum braking force on driving. The hydraulic system to control braking pressure consists of sol-flow type using solenoid valve, flow control valve or consists of sol-sol type using two solenoid valve. In this paper, the hydraulic system in ABS is composed of sol type using a 3port-2position solenoid valve, and vehicle system is composed of 1/4 vehicle model. And slip ratio is controlled using PWM (Pulse-Width-Modulation) control algorithm. Braking friction coefficient and tracking friction coefficient which are described by slip ratio's function have maximum value when slip ratio has its value from 0.1 to 0.3. And slip ratio is controlled constantly in this boundary value even in the variation of road's condition in some boundary.

  • PDF