• Title/Summary/Keyword: wheel material

Search Result 316, Processing Time 0.03 seconds

The Structural and Frequency Response Analysis for the Bogie of the Rubber Wheel-type AGT (고무차륜형식 경전철(AGT) 대차의 구조해석 및 주파수 응답해석)

  • 변상윤;유형선;윤성호
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.558-565
    • /
    • 1999
  • Rubber wheel-type AGT has two major kinds of bogie; one is the bogie type and the other and passenger loads. This paper deals with the statics analysis for two types of bogie frame subjected to combined external forces, as well as independent ones specified in UIC 515-4. Furthermore, the dynamics analysis is performed under vibrational loading conditions so as to compare dynamic characteristics, Numerical results by using commercial packages, Ⅰ-DEAS and NASTRAN show that maximum stresses do not exceed the yielding level of material used for both bogies. From an overall viewpoint of strength, the bogie type turns out to be superior to the steering type except the case of a lateral loading. It is also observed that the steering type shows a be stiffened. It is strongly anticipated that vibrational fatigue analysis should be carried out under realistic loading conditions closely matching to situations such as running surface and lateral clearances along the guideway.

  • PDF

Design and Fabrication of a Rectangular Spiral Type Antenna for 433 MHz (433 MHz TPMS용 직각 스파이럴 구조 안테나 설계 및 제작)

  • Oh, Sung-Kon;An, Jun-O;Kim, Boo-Gyoun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.752-755
    • /
    • 2012
  • In this paper, the rectangular spiral shaped antenna is designed and fabricated for 433 MHz TPMS. Proposed antenna has the -10 dB impedance bandwidth of 23 MHz(427~450 MHz). The antenna is fabricated with the size of $5mm(W){\times}23mm(D){\times}10mm(H)$ by brass material. Return loss is below -10 dB at 433 MHz${\pm}$10 MHz mounted tire wheel and not mounted both. The radiation power is -44.21 dBm without wheel and -50.0 dBm installed wheel. The proposed antenna can be practical use through data transmission test results.

Effect of Asphalt Pavement Conditions on Tensile Adhesive Strength of Waterproofing System on Concrete Bridge Deck (아스팔트 포장 조건이 교면방수 시스템의 인장접착강도에 미치는 영향)

  • Lee, Byung-Duck;Park, Sung-Ki;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.2 s.16
    • /
    • pp.15-24
    • /
    • 2003
  • The performance of waterproofing system (WPS) is known to be a function of many complex interaction of material factors, design details, and the quality of construction, but it is mainly determined by the bond strength, which is measured by tensile adhesive strength (TAS) test. to the concrete bridge deck. In this research, eight waterproofing membranes were selected from commercial market and the tensile adhesive characteristics of the WPS on concrete bridge deck were investigated in view of various factor in asphalt pavement. The factors include type of asphalt mixture, pavement thickness, paving temperature and influence of wheel loading. TAS test of different asphalt pavement types showed that TAS of WPS under SMA (Stone Mastic Asphalt) pavement was greater than that under dense asphalt pavement. TAS of sheet membranes was improved as the compaction temperature of asphalt concrete increase, but TAS of liquid membranes were not. The influence of thickness of pavement val minimal with given laboratory test condition. TAS of sheet membranes after wheel tracking test were in the order of the sites under wheel path (UWP), before wheel tracking (BWT) and nearby wheel path (NWP). Since TAS of the same WPS of UWP was higher than TAS of BWT, wheel loading had function of pressing WPS resulting in higher adhesive strength. But liquid membranes were variable on types. The feature of detached interface after TAS test showed that sheet types were all detached in between deck concrete and WPS, and liquid types were detached in between asphalt pavement and WPS.

  • PDF

A Study on the ELID Grinding Properties of Single Crystal Sapphire Wafer using Ultrasonic Table (초음파 테이블을 이용한 단결정 사파이어 웨이퍼의 ELID 연삭가공 특성 연구)

  • Hwang, JinHa;Kwak, Tae-Soo;Lee, Deug-Woo;Jung, Myung-Won;Lee, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.75-80
    • /
    • 2013
  • Single crystal sapphire being used in high technology industry is a brittle material with a high hardness and excellent physical properties. ELID(Electrolytic In-Process Dressing) grinding technology was applied to material removal machining process of single crystal sapphire wafer. Ultrasonic vibration which added to material using ultrasonic table was adopted to efficient ELID grinding of sapphire materials. The evaluation of the ground surface of single crystal sapphire wafer was carried out by means of surface measuring by using AFM(Atomic Force Microscope), surface roughness tester and optical microscope device. As the results of experiment, it was shown that more efficient grinding was conducted when using ultrasonic table. In case of using #170 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was superior to ELID ground specimen without ultrasonic table. However, In case of using #2000 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was inferior to ELID ground specimen without ultrasonic table.

Rotordynamic Performance Analysis and Operation Test of a Power Turbine for the Super critical CO2 Cycle Application (초임계 CO2 발전용 파워 터빈의 회전체 동역학 해석 및 구동 시험)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • This paper presents a rotordynamic analysis and the operation of a power turbine applied to a 250 kW super-critical $CO_2$ cycle. The power turbine consists of a turbine wheel and a shaft supported by two fluid film bearings. We use a tilting pad bearing for the power turbine owing to the high speed operation, and employ copper backing pads to improve the thermal management of the bearing. We conduct a rotordynamic analysis based on the design parameters of the power turbine. The dynamic coefficients of the tilting pad bearings were calculated based on the iso-thermal lubrication theory and turbine wheel was modeled as equivalent inertia. The predicted Cambell diagram showed that there are two critical speeds, namely the conical and bending critical speeds under the rated speed. However, the unbalance response prediction showed that vibration levels are controlled within 10 mm for all speed ranges owing to the high damping ratio of the modes. Additionally, the predicted logarithmic decrement indicates that there is no unstable mode. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation, and we monitor the shaft vibration and temperature of the lubricant during the test. In the steady state, we record a temperature rise of $40^{\circ}C$ between the inlet and outlet lubricant and the measured shaft vibration shows good agreement with the prediction.

A Study on Grinding Performance Comparison of Diamond Wheel Characteristics (다이아몬드 휠 특성에 따른 연삭성능 비교에 관한 연구)

  • Cha, Seung-hwan;Ha, Byeong-Cheol;Yang, Dong-Ho;Park, Shang-Hyun;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.105-110
    • /
    • 2020
  • Alumina, a typical ceramic material used for semiconductors and display parts, is the subject of research and development efforts for mineral material processing. Alumina is extremely difficult to process since it is brittleness to either fine ceramics material. We have studied the shape of diamond particles and their use in machinability for alumina processing. Our study was carried out under various processing conditions, including cutting speed, table speed, and the surface roughness of the work piece. We also analyzed the wear characteristics of the tool by total cutting.

Effect on the Physical Performance of Functionalized Silane Coupling Agent on Epoxy-Based Concrete Surface Finishing Material for Parking Floor (기능성 실란 커플링제가 에폭시계 콘크리트 주차장 바닥용 마감재의 물리적 성능에 미치는 영향)

  • Chae, Woo-Byung;Seong, Dong-Yun;Seo, Sang-Kyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.279-282
    • /
    • 2012
  • This study attempted to the effect on the physical performance of silane coupling agent on solventless epoxy-based concrete surface finishing material for parking floor. Tests were carried out in accordance with KS F 4041 and KS F 4937. The results of compressive strength, flexural compressive are 95.6N/㎟, 25.4N/㎟ and after wheel moving load testing, average abrasive depth is 0.96mm, these results satisfied the quality standard of KS F 4041, KS F 4937. As conclusion, this study confirmed that the silane coupling agent greatly effected on the physical performance of solventless epoxy resin.

  • PDF

Advanced Railway Vehicle Technology using Smart Materials (지능재료를 이용한 차세대 철도차량기술)

  • Kim, Jae-Hwan;Kang, Bu-Byoung;Kim, Kyeong-Jin;Chung, Heung-Chai;Choi, Sung-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.252-256
    • /
    • 2003
  • Smart materials can adapt to changes of environment like living organs in nature such that they can maximize the performance and minimize the maintenance expense of engineering systems. Such materials have been paid attention ten years ago and applied in the area of industry, aerospace, transportation and civil structures. This paper summarizes smart material technology and shows some application examples in railway vehicles. Also, its future of smart material technology in railway vehicle technology is envisaged based on its possibility and practical aspect.

Optimal Supply of Grinding Fluid for Creepfeed Grinding (고능률 연삭을 위한 연삭유제 공급의 최적화)

  • 박재현;홍순익;하만경;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.90-94
    • /
    • 1996
  • Thermal problems of creep-feed grinding are more serious than regular grinding. So grinding fluid supply in creep-feed grinding is very important. Grinding fluid supply quantity is not linear with effectiveness because grinding wheel is porosity material and the grinding area is solid contact area. In this paper, by using AE signal, optimal quantity of fluid supply was determined. And surface characteristics of wet creep-feed grinding were analized.

  • PDF

Development of Satisfaction Models for Passenger Car Interior Materials Considering Statistical, Technical, and Practical Aspects of Design Variables (설계변수의 통계적.기술적.실질적 측면을 고려한 자동차 내장재질의 만족도 모형 개발)

  • You, Hee-Cheon;Ryu, Tae-Beum;Oh, Kyung-Hee;Yun, Myung-Hwan;Kim, Kwang-Jae
    • IE interfaces
    • /
    • v.17 no.4
    • /
    • pp.482-489
    • /
    • 2004
  • As the functional characteristics of passenger cars have reached to a satisfactory level, customers place more concerns with the aesthetic aspects of interior designs. The present study developed satisfaction models of passenger car interior materials for six parts including crash pad, steering wheel, transmission gearshift knob, audio panel, metal grain, and wooden grain. Eight to fifteen material design variables such as color, embossing, and smoothness were defined for the six interior parts based on literature survey, customer reviews, and expert opinions. A satisfaction survey was conducted for 30 vehicles with 30 participants ($mean{\pm}SD$ of age = $28.7{\pm}6.6$) by using a modified magnitude estimation scale. Based on the survey results, the material design variables were screened from statistical, technical, and practical aspects. With the screened variables, satisfaction models were developed by using the quantification I method for the six interior parts, indicating the importance of material design variables and preferred material properties.