• Title/Summary/Keyword: wheel dynamics

Search Result 257, Processing Time 0.029 seconds

The Estimation of Structural-Borne Noise and Vibration of the Bridge under the Passage of the Light Rail Transit (경량전철 교량 상부구조의 열차주행에 대한 진동 및 소음 분석)

  • Yeo, In-Ho;Chung, Won-Seok;Kim, Sung-Choon;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.22-28
    • /
    • 2007
  • During the passage of the train, the railway bridge undergoes vibration and noise. The noise of railway bridge can be occurred from various sources. The wheel-rail contact, noise from machinery parts, structural-borne noise, pantagraph noise and aerodynamic noise of the train work in combination. Running train is one of the most important factors for railway bridge vibration. The repeated forces with equidistant axles cause the magnification of dynamic responses which relates with maintenance of the track structure and structure-borne noises. The noise problem is one of the most important issues in services of light rail transit system which usually passes through towns. In the present study, The vibration and noise of the LRT bridge will be investigated with utilizing dynamics responses from moving train as input data for noise analysis.

Analysis of Human Arm Movement During Vehicle Steering Maneuver

  • Tak, Tae-Oh;Kim, Kun-Young;Chun, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.444-451
    • /
    • 2005
  • The analysis of human arm motion during steering maneuver is carried out for investigation of man-machine interface of driver and steering system Each arm is modeled as interconnection of upper arm, lower arm, and hand by rotational joints that can properly represents permissible joint motion, and both arms are connected to a steering wheel through spring and damper at the contact points. The joint motion law during steering motion is determined through the measurement of each arm movement, and subsequent inverse kinematic analysis. Combining the joint motion law and inverse dynamic analysis, joint stiffness of arm is estimated. Arm dynamic analysis model for steering maneuver is setup, and is validated through the comparison with experimentally measured data, which shows relatively good agreement. To demonstrate the usefulness of the arm model, it is applied to study the effect of steering column angle on the steering motion.

Dynamic Analysis on High-Speed EMU Based on 34-Degree-of-Freedom Model with Creepage (크리피지를 고려한 분산형 고속전철의 34 자유도 동적해석)

  • Lee, Rae-Min;Lee, Pil-Ho;Kim, Ju-Sub;Koo, Ja-Choon;Choi, Yeon-Sun;Lee, Sang-Won
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.465-470
    • /
    • 2009
  • This paper discusses the numerical study on the dynamics of the high-speed EMU by developing the 34 degrees-of-freedom (DOF) lumped parameter model including the effect of the creepage. In order to reflect the creepage, the Kalker's wheel-rail contact theory is introduced in the proposed model. The dynamic analysis using $Matlab^{(R)}$ software is conducted, and its results are compared with those from ADAMS/Rail to investigate the validity of the proposed 34-DOF lumped parameter model. It is demonstrated that the results from the numerical study are similar to those from ADAMS/Rail. In addition, the critical design parameters of high-speed EMU are examined, and the design guidelines for reducing vibration and enhancing ride quality are proposed.

  • PDF

Co-Simulation and Simulation Integration Technology Development for SUV Vehicle Equipped with Electric Power Steering (EPS) (SUV - EPS 차량의 동시 시뮬레이션 기술 개발 및 시뮬레이션 통합 기술 개발)

  • B. C. Jang;Y. K. Eom
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.472-475
    • /
    • 2003
  • Electric Power Steering (EPS) mechanism has become widely equipped in passenger vehicle due to the environmental consciousness and higher fuel efficiency. This paper describes the development of co-simulation technique and simulation integration technique of EPS control system with dynamic vehicle model. A full vehicle model interacted with EPS control algorithm is concurrently simulated on a single bump road condition. Dynamic responses of vehicle chassis and steering system resulting from road surface impact are evaluated and compared with proving ground experimental data. The comparisons will show reasonable agreement on tie-rod load. rack displacement, handle-wheel torque and tire center acceleration. This developed simulation capability can be used for EPS performance evaluation and calibration as well as for vehicle handling performance integration and synthesis.

  • PDF

Multi-flexible Dynamic Modeling and Wheel Load Analysis of a Rubber Tired Gantry Crane in Container Cargo Working (컨테이너 하역작업 시 갠트리 크레인의 유연다물체 동역학 모델링 및 윤하중 해석)

  • Kim, Jungyun;Kim, Jingon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.379-384
    • /
    • 2014
  • This article describes the dynamic behaviors of a rubber tired gantry crane(RTGC) under typical load conditions which are used in the design of gantry cranes. In order to investigate the dynamic characteristics of an RTGC, we developed a finite element crane model for its huge structure. The finite element model was validated with the modal test results, e.g., natural frequencies and normal modes. And other components of RTGC were converted into detailed 3D CAD models and finally transformed to rigid body models in a dynamic simulation program ADAMS. The load conditions considered in this paper were a normal operating condition(OP1) and container hanging condition with no external loads. As a result, we could find there was large influence of crane's vibration owing to its structural stiffness and deformation. And the vibration of crane could made the movements of RTGC, which occurs crash or malfunction of crane works.

Analysis of the Critical Speed and Hunting Phenomenon of a High Speed Train (고속전철의 임계속도와 헌팅현상 해석)

  • Song, Ki-Seok;Koo, Ja-Choon;Choi, Yeon-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.342-348
    • /
    • 2014
  • Contact between wheel and rail leads to the creep phenomenon. Linear creep theory, assuming linear increase in the creep force vs creep, results in a critical speed at which the vibration of a railway vehicle goes to infinity. However, the actual creep force converges to a limited value, so that the vibration of a railway vehicle cannot increase indefinitely. In this study, the dynamics of a railway vehicle is investigated with a 6 DOF bogie model includingthe nonlinear creep curves of Vermeulen, Polach, and a newly calculated creep curve with strip theory. Strip theory considers the profiles of the wheel and rail. The results show that the vibration of a railway vehicle results in a limit-cycle over a specific running speed, and this limit-cycle becomes smaller as the slope of the creep-curve steepens. Moreover, a hunting phenomenon is caused due to flange contact, which restricts the magnitude of the limit-cycle.

Station Keeping Maneuver Planning Using COMS Flight Dynamic Software

  • Kim, Hae-Yeon;Lee, Byoung-Sun;Hwang, Yoo-La;Shin, Dong-Suk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.16-21
    • /
    • 2007
  • Various perturbations by the sun, the moon and the earth itself cause a continuous change in nominal position of a geostationary satellite. In order to maintain the satellite within a required window, north-south station keeping for controlling inclination and right ascension of ascending node, and east-west station keeping for controlling eccentricity and longitude are required. In this paper, station keeping maneuver simulation for Communication, Ocean and Meteorological Satellite (COMS) was performed using COMS Flight Dynamics Software(FDS) and the results were analyzed. COMS performs weekly based east-west/north-south station keeping to maintain satellite within ${\pm}0.05^{\circ}$ at the nominal longitude of $128.2^{\circ}E$. In addition, COMS performs wheel off-loading maneuver twice a day to eliminate attitude error caused by one-solar wing in the south panel of the satellite. In this paper, station keeping maneuver considering wheel off-loading maneuver was performed and the results showed that COMS can be maintained well within ${\pm}0.05^{\circ}$ window using COMS FDS.

  • PDF

Reinforcement Learning Strategy for Automatic Control of Real-time Obstacle Avoidance based on Vehicle Dynamics (실시간 장애물 회피 자동 조작을 위한 차량 동역학 기반의 강화학습 전략)

  • Kang, Dong-Hoon;Bong, Jae Hwan;Park, Jooyoung;Park, Shinsuk
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.297-305
    • /
    • 2017
  • As the development of autonomous vehicles becomes realistic, many automobile manufacturers and components producers aim to develop 'completely autonomous driving'. ADAS (Advanced Driver Assistance Systems) which has been applied in automobile recently, supports the driver in controlling lane maintenance, speed and direction in a single lane based on limited road environment. Although technologies of obstacles avoidance on the obstacle environment have been developed, they concentrates on simple obstacle avoidances, not considering the control of the actual vehicle in the real situation which makes drivers feel unsafe from the sudden change of the wheel and the speed of the vehicle. In order to develop the 'completely autonomous driving' automobile which perceives the surrounding environment by itself and operates, ability of the vehicle should be enhanced in a way human driver does. In this sense, this paper intends to establish a strategy with which autonomous vehicles behave human-friendly based on vehicle dynamics through the reinforcement learning that is based on Q-learning, a type of machine learning. The obstacle avoidance reinforcement learning proceeded in 5 simulations. The reward rule has been set in the experiment so that the car can learn by itself with recurring events, allowing the experiment to have the similar environment to the one when humans drive. Driving Simulator has been used to verify results of the reinforcement learning. The ultimate goal of this study is to enable autonomous vehicles avoid obstacles in a human-friendly way when obstacles appear in their sight, using controlling methods that have previously been learned in various conditions through the reinforcement learning.

Development of Pump-Drive Turbine with Hydrostatic Bearing for Supercritical CO2 Power Cycle Application (정압 베어링을 적용한 초임계 CO2 발전용 펌프-구동 터빈 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Yoon, Euisoo
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, we present a hydrostatic bearing design and rotordynamic analysis of a pump-and-drive turbine module for a 250-kW supercritical CO2 cycle application. The pump-and-drive turbine module consists of the pump and turbine wheel, assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 21,000 rpm and the rated power is 143 kW. For the bearing operation, we use high-pressure CO2 as the lubricant, which is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various orifice diameters, and then select the diameter that provides the maximum bearing stiffness. We also conduct a rotordynamic analysis based on the design parameters of the pump-and-drive turbine module. The predicted Campbell diagram shows that there is no critical speed below the rated speed, owing to the high stiffness of the bearings. Furthermore, the predicted damping ratio indicates that there is no unstable mode. We conduct the operating tests for the pump and drive turbine modules within the supercritical CO2 cycle test loop. The pressurized CO2, at a temperature of 136℃, is supplied to the turbine and we monitor the shaft vibration during the test. The test results show that there is no critical speed below the rated speed, and the shaft vibration is controlled to below 3 ㎛.

Development of Turbo Expanders with Hydrostatic Bearings for Hydrogen Liquefaction Plants (정압 베어링을 적용한 수소 액화 공정용 터보 팽창기 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • This paper presents a hydrostatic bearing design and rotordynamic analysis of a turbo expander for a hydrogen liquefaction plant. Th~e turbo expander includes the turbine and compressor wheel assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 75,000 rpm and the rated power is 6 kW. For the bearing operation, we use pressurized air at 8.5 bar as the lubricant that is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various gauge pressure ratios and select the orifice diameter providing the maximum bearing stiffness. Additionally, we conduct a rotordynamic analysis based on the calculated bearing stiffness and damping considering design parameters of the turbo expander. The predicted Cambell diagram indicates that there are two critical speeds under the rated speed and there exists a sufficient separation margin for the rated speed. In addition, the predicted rotor vibration is under 1 ㎛ at the rated speed. We conduct the operating test of the turbo expander in the test rig. For the operation, we supply pressurized air to the turbine and monitor the shaft vibration during the test. The test results show that there are two critical speeds under the rated speed, and the shaft vibration is controlled under 2.5 ㎛.